Looking for the origin of the switch between coordination-captured helicates

and catenates.

Lilit Aboshyan-Sorgho, Martine Cantuel, Gérald Bernardinelli, and Claude Piguet*

Supporting Information (13 pages)

Compound	1
Formula	$Zn_2C_{62}H_{59}N_{15}Cl_1O_{11}F_9S_3$
fw	1623.7
Crystal system	triclinic
Space Group	$P\overline{1}$
<i>a</i> (Å)	12.4234(8)
<i>b</i> (Å)	17.5344(12)
<i>c</i> (Å)	18.8655(13)
α (deg)	68.137(8)
$\beta(\text{deg})$	71.102(7)
$\gamma(\text{ deg})$	73.688(8)
$V(\text{\AA}^3)$	3547.8(5)
Ζ	2
Crystal Size (mm)	0.054 x 0.13 x 0.25
d_{calcd} (Mg m ⁻³)	1.520
$\mu(MoK\alpha) (mm^{-1})$	0.894
Tmin, Tmax	0.8203 , 0.9495
20max (deg)	51.2
No. of reflns collected	26547
No. of independent reflns	12893
No. of obsd ^{a} (used ^{b}) reflns	5709 (5816)
No. of variables	1000
Weighting scheme p ^c	0.00025
Max and min $\Delta \rho$ (e Å ⁻³)	1.15 , -1.02
GOF $(F)^{d}$ (all data)	1.01(1)
$R^{e}, \omega R^{f}$	0.051, 0.046

Table S1Summary of crystal data, intensity measurement and structure refinement for $[Zn_2(L6)Cl](CF_3SO_3)_3(H_2O)_2(CH_3CN)_4$ (1).

 $\frac{1}{|Fo|} > 4\sigma(Fo); \ ^{b} \text{ Used in the refinements (including reflns with } |Fo| \le 4\sigma(Fo) \text{ if } |Fc| > |Fo|); \ ^{c} \omega = 1/[\sigma^{2} (F_{o}) + p (F_{o})^{2}]; \ ^{d} S = [\Sigma \{((F_{o}-F_{c}) / \sigma(F_{o}))^{2} \} / (N_{ref} - N_{var})]^{1/2}; \ ^{e} R = \Sigma ||F_{o}| - |F_{c}|| / \Sigma ||F_{o}|; \ ^{f} \omega R = [\Sigma (\omega|Fo| - |Fc|)^{2} / \Sigma \omega|Fo|^{2}]^{1/2}.$

Table S2Distances and angles between H-bond donors and acceptors in the crystal structureof $[Zn_2(L6)(Cl)(H_2O)_2(CF_3SO_3)](CF_3SO_3)_2(CH_3CN)_4$ (1). (numbering scheme isgiven in Fig. 6 and a pictorial illustration in Fig. S5).

D-H···A	<i>d</i> (D-H)/ Å	<i>d</i> (H···A)/ Å	d (D…A)/ Å	∠ (D-H…A)/ °
O(1w)-H(11w)···O(1b)	0.96	1.77	2.692(8)	160
O(1w)-H(12w)····O(3a)	0.98	1.68	2.640(7)	164
O(2w)-H(21w)…Cl(1)	0.98	2.17	3.115(5)	163
O(2w)-H(22w)···O(2c)	0.97	1.70	2.66(3)	170

Table S3Bond distances [Å] and bond angles [°] in the molecular structure of the cation $[Zn_2(L6)(Cl)(H_2O)_2(CF_3SO_3)]^{2+}$ (numbering scheme is given in Fig. 6).

Bond distances / Å				
Zn1-N1	2.113(6)	Zn1-N2	2.131(5)	
Zn1-N7	2.137(6)	Zn1-Cl1	2.252(3)	
Zn1-O1w	2.004(6)			
Zn2-N4	2.087(5)	Zn2-N6	2.144(6)	
Zn2-N9	2.077(6)	Zn2-N11	2.157(9)	
Zn2-O2w	2.067(5)	Zn2-O1a	2.340(7)	

		-	
N1-Zn1-N2	75.1(2)	N2-Zn1-N7	150.2(3)
N1-Zn1-N7	75.2(2)	N2-Zn1-O1w	92.1(3)
N1-Zn1-O1w	107.7(3)	N2-Zn1-Cl1	100.7(2)
N1-Zn1-Cl1	133.9(2)	N7-Zn1-O1w	99.0(3)
O1w-Zn1-Cl1	118.4(2)	N7-Zn1-Cl1	98.1(2)
N4-Zn2-N6	78.4(2)	N6-Zn2-N9	94.9(3)
N4-Zn2-N9	171.8(2)	N6-Zn2-N11	98.1(3)
N4-Zn2-N11	98.7(3)	N6-Zn2-O1a	86.4(3)
N4-Zn2-O1a	89.7(3)	N6-Zn2-O2w	166.3(3)
N4-Zn2-O2w	94.4(2)	N9-Zn2-N11	77.5(3)
N11-Zn2-O1a	171.1(2)	N9-Zn2-O1a	94.6(3)
N11-Zn2-O2w	94.5(2)	N9-Zn2-O2w	93.1(2)
Ola-Zn2-O2w	81.9(3)		

Least-squares planes description	Abbreviation	Max. deviation/Å	Atom
Pyridine, N1	py1	0.005	C5
Benzimidazole, N2, N3	bz1a	0.008	C6
Benzimidazole, N4, N5	bz2a	0.017	C19
Pyridine, N6	py2a	0.023	C24
Benzimidazole, N7, N8	bz1b	0.010	C29
Benzimidazole, N9, N10	bz2b	0.016	C34
Pyridine, N11	py2b	0.013	C42

Table S4Selected Least-Squares Planes Data for 1.

Intramolecular interplanar angles /°

	py1	bz1a	bz2a	py2a	bz1b	bz2b
bz1a	4.6(2)					
bz2a	65.3(2)	65.9(2)				
py2a	48.9(2)	50.4(2)	18.5(2)			
bz1b	7.6(2)	9.6(2)	57.7(2)	41.4(2)		
bz2b	56.2(2)	51.8(2)	84.9(1)	90.0(2)	60.1(2)	
py2b	52.4(3)	48.4(2)	80.7(2)	88.4(2)	57.4(2)	9.1(2)

Plane 1 - plane 2#	Symmetry operation for plane 2#	\overline{d} /Å	\angle (plane 1, plane 2#) /°
py1 - bz1a #	(1-x, 1-y, 1-z)	3.52(8)	4.6(2)
bz2a – bz2a #	(1-x, 2-y, -z)	3.413(10)	0
bz1b - bz1b #	(-x, 1-y, 1-z)	3.717(6)	0
bz2b – bz2b #	(-x, 2-y, 1-z)	3.308(8)	0

Intermolecular interplanar distances and angles involved in stacking interactions (°)

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is © The Royal Society of Chemistry 2012

Figure S1 Symmetry numbers (σ) and statistical factors (ω) for the complexation of $[Fe(CH_3CN)_6]^{2+}$ and $[Ag(CH_3CN)_4]^+$ to L5 or L6 in acetonitrile. The two diastereomeric [2]catenates with D_2 (*PP/MM* enantiomers) and S_4 (meso-*PM* isomer) symmetries are considered.

Figure S2 Schematic illustration of the intramolecular macrocyclization processes responsible for the formation of $[AgFeAg(L5)_2]^{4+}$ as a) a double-stranded helicate and b) a [2]catenate. The twenty atoms of the crooked chains connecting the interacting groups are highlighted.

H11

Hl

H3_{H12}

H11 H3 H1H10

8

H1

8.5

9

H4 H5

7

6.5

H9

7.5

H15

H7 H7'

3.5

4

 H_2O

2.5

3

2

1.5 ppm

¹H NMR titration of L6 (10⁻² M) with La(III) and Zn(II) in CDCl₃/CD₃CN = 1:1 at **Figure S3** 293 K with numbering scheme and highlighting the chemical shifts for H6 and H8 during the successive formation of $\left[LaZn(L6)_3\right]^{5+}$ (*) and $\left[ZnLaZn(L6)_3\right]^{7+}$ (•) . Adapted from ref. 24.

H6

5

4.5

H8

6

5.5

Figure S4 ESI-MS spectra of $[LnZn_2(L6)_3]^{7+}$ with a) $Ln = La (10^{-4} \text{ M})$, b) $Ln = Eu (10^{-4} \text{ M})$ and c) $Ln = Yb (5 \cdot 10^{-4} \text{ M})$ in CH₃CN:CHCl₃ (1:1) at 298 K (Otf = CF₃SO₃⁻).

Figure S5 Schematic view of the hydrogen bonding network in the crystal structure of $[Zn_2(L6)(C1)(H_2O)_2(CF_3SO_3)](CF_3SO_3)_2(CH_3CN)_4$ (1). The acetonitrile molecules are not involved in hydrogen bonding and are thus omitted for clarity.

Figure S6 Aromatic rings involved in intermolecular π -stacking interactions in the crystal structure of $[Zn_2(L6)(C1)(H_2O)_2(CF_3SO_3)](CF_3SO_3)_2(CH_3CN)_4$ (1). The symmetry operations relating the various molecules are given between parentheses. Interplanar angles and distances are collected in Table S4.

$$\omega_{\text{closing}}^{\text{geometry}} = \frac{(1 \cdot 3)}{(2 \cdot 3^6)} = 1/2 \qquad \qquad \omega_{\text{closing}}^{\text{chiral}} = \frac{1}{(1/2)} = 2$$
$$\Rightarrow \omega_{\text{closing}} = \omega_{\text{closing}}^{\text{geometry}} \cdot \omega_{\text{closing}}^{\text{chiral}} = \frac{1}{2} \cdot 2 = 1$$

Figure S7 Symmetry numbers (σ) and statistical factors (ω) for the macrocyclization of $[Zn_2(L6)]^{4+}$ in acetonitrile.

Appendix 1. Experimental speciation obtained by ¹H NMR for equilibrium 9.

For a given stoichiometric $|Zn|_{tot} / |L6|_{tot}$ ratio, the integrated intensities of the ¹H NMR signals recorded for the same proton in $[Zn_2(L6)]^{4+} (I_{Zn2L})$, $[Zn(L6)_2]^{2+} (I_{ZnL2})$ and $[Zn_3(L6)_2]^{6+} (I_{Zn3L2})$ can be compared according to equilibrium 9 (eq. S1) and scaled with respect to $|Zn_2(L6)|$ (eq. S2).

$$\frac{\left|\operatorname{Zn}\left(\mathbf{L6}\right)_{2}\right|}{\left|\operatorname{Zn}_{3}\left(\mathbf{L6}\right)_{2}\right|} = \left(\frac{I_{\operatorname{ZnL2}}}{I_{\operatorname{Zn3L2}}}\right) = 1$$
(S1)

$$\frac{\left|\operatorname{Zn}\left(\mathbf{L6}\right)_{2}\right|}{\left|\operatorname{Zn}_{2}\left(\mathbf{L6}\right)\right|} = \left(\frac{I_{\mathrm{ZnL2}}}{2I_{\mathrm{Zn2L}}}\right)$$
(S2)

Introducing eqs (S1) and (S2) into the mass balance eq. (S3) yields eq. (S4) after straightforward algebraic transformations.

$$\left|\mathbf{L6}\right|_{\text{tot}} = \left|\mathbf{Zn}_{2}(\mathbf{L6})\right| + 2\left|\mathbf{Zn}(\mathbf{L6})_{2}\right| + 2\left|\mathbf{Zn}_{3}(\mathbf{L6})_{2}\right|$$
(S3)

$$\left| \mathbf{Zn}_{2}(\mathbf{L6}) \right| = \left| \mathbf{L6} \right|_{\text{tot}} \left(\frac{I_{\text{Zn2L}}}{I_{\text{Zn2L}} + 2I_{\text{ZnL2}}} \right)$$
(S4)

Introducing eq. (S4) into eqs (S1) and (S2) gives the remaining complex speciation

$$|Zn(L6)_2| = |Zn_3(L6)_2| = |L6|_{tot} \left(\frac{I_{ZnL2}}{2(I_{Zn2L} + 2I_{ZnL2})} \right)$$
 (S5)

The missing concentration |Zn| shown in eq. (S7) can be deduced from the mass balance written for the metal concentration (eq. S6).

$$|Zn| = |Zn|_{tot} - |Zn(L6)_2| - 2|Zn_2(L6)| - 3|Zn_3(L6)_2|$$
(S6)

$$|Zn| = |Zn|_{tot} - 2|L6|_{tot} \left(\frac{I_{Zn2L} + I_{ZnL2}}{I_{Zn2L} + 2I_{ZnL2}}\right)$$
(S7)

The final introduction of the various concentrations expressed in eqs (S4)-(S7) into the law of mass action associated with equilibrium (9) yields eq. (S8) for $|Zn|_{tot} = 2|L6|_{tot}$ (the standard concentration of the reference state is set at $c^{\theta} = 1$ M).

$$K_{\text{exch}} = \frac{|Zn(\mathbf{L6})_2| \cdot |Zn_3(\mathbf{L6})_2| \cdot |Zn|^4}{|Zn_2(\mathbf{L6})|^4} = 4(|\mathbf{L6}|_{\text{tot}})^2 \frac{(I_{\text{ZnL}})^6}{(I_{\text{Zn2L}})^4 (I_{\text{Zn2L}} + 2I_{\text{ZnL2}})^2}$$
(S8)

Integration of the signals for H8 in the ¹H NMR spectrum of $[Zn_2(L6)Cl(CF_3SO_3)(H_2O)_2](CF_3SO_3)_2$ ($|L6|_{tot} = 2.5$ mM, CD₃CN, 293 K, Fig. 9) gave $I_{Zn2L} = 5$ and $I_{ZnL2} = 1$, from which we calculated $|Zn_2(L6)| = 1.79 \cdot 10^{-3}$ M (eq S4), $|Zn(L6)_2| = |Zn_3(L6)_2| = 1.79 \cdot 10^{-4}$ M (eq. S5), $|Zn| = 7.14 \cdot 10^{-4}$ M (eq. S7) and $K_{exch} = 8.16 \cdot 10^{-10}$.

Appendix 2. Thermodynamic model for equilibrium 9.

	$K_{ m excl}$	h		
	$4 [Zn_2(L6)]^{4+}$	\rightarrow [Zn(L6) ₂] ²⁺	+ $[Zn_3(L6)_2]^{6+}$	+ $4 [Zn]^{2+}$ (9)
Point groups:	C_2	D_{2d}	S_4	$O_{ m h}$
σ^{ext} :	2	4	2	24
$\sigma^{ ext{int}}$:	36	312	312	1
$\sigma^{ m chiral}$:	1/2	1	1	1

$$\omega_{\text{exch}} = \frac{\left(2 \cdot 3^{6} \cdot (\frac{1}{2})\right)^{4}}{\left(4 \cdot 3^{12}\right) \left(2 \cdot 3^{12}\right) \left(24\right)^{4}} = \frac{1}{2654208}$$

$$\Rightarrow K_{\text{exch}} = \omega_{\text{exch}} \frac{\left[\left(f_{\text{tri}}^{\text{Zn}}\right)^{2} u_{\text{tri}}^{\text{L6,L6}}\right] \cdot \left[\left(f_{\text{tri}}^{\text{Zn}}\right)^{2} \left(f_{\text{bi}}^{\text{Zn}}\right)^{4} \left(EM_{\text{catenate}}\right)^{2} u_{\text{tri}}^{\text{L6,L6}} \left(u_{\text{bi}}^{\text{L6,L6}}\right)^{2} \left(u_{\text{Zn,Zn}}^{\text{Zn,Zn}}\right)^{2}\right]}{\left[\left(f_{\text{tri}}^{\text{Zn}}\right) \left(f_{\text{bi}}^{\text{Zn}}\right)^{2} \left(EM_{\text{catenate}}\right) \left(u_{\text{bi}}^{\text{L6,L6}}\right) \left(u_{\text{Zn,Zn}}^{\text{Zn,Zn}}\right)\right]^{4}}$$

$$\Rightarrow K_{\text{exch}} = \omega_{\text{exch}} \left(\frac{u_{\text{tri}}^{\text{L6,L6}}}{u_{\text{bi}}^{\text{L6,L6}}} \frac{1}{EM_{\text{catenate}} \cdot \left(f_{\text{bi}}^{\text{Zn}}\right)^{2} \cdot u_{\text{Zn,Zn}}}\right)^{2} (10)$$