Supporting Information

Photophysical and Electrochemical Properties of Platinum(II) Complexes Bearing a Chromophore-Acceptor Dyad and their Photocatalytic Hydrogen Evolution

Gui-Ju Zhang,^a Xin Gan,^b Quan-Qing Xu,^b Yong Chen,^a Xi-Juan Zhao,^a Biao Qin,^a Xiao-Jun Lv,^a Siu-Wai Lai,^c Wen-Fu Fu,^{*a,b} and Chi-Ming Che^{*c}

^aKey Laboratory of Photochemical Conversion and Optoelectronic Materials, CAS-HKU Joint Laboratory on New Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Peking 100190, P.R. China

^bCollege of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650092, P.R. China

^cDepartment of Chemistry, Institute of Molecular Functional Materials and CAS-HKU Joint Laboratory on New Materials, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, P.R. China

Fig. S1. Transient absorption spectra of complex 2 in CH₃CN ($\lambda_{exc} = 355$ nm) at room temperature.

Fig. S2. Transient absorption spectra of complex 3 in CH₃CN ($\lambda_{exc} = 355$ nm) at room temperature.

Fig. S3. Transient absorption spectra of complex 4 in CH₃CN ($\lambda_{exc} = 355$ nm) at room temperature.

Fig. S4. Emission spectral changes of $1 (1.3 \times 10^{-5} \text{ M})$ in degassed CH₃CN/H₂O (v/v, 1:1) at room temperature as a function of the colloidal Pt concentration. Inset: Stern-Volmer plot for emission quenching of 1.

Fig. S5. Emission spectral changes of **9** $(2.0 \times 10^{-5} \text{ M})$ in degassed CH₃CN/H₂O (v/v, 1:1) at room temperature as a function of the colloidal Pt concentration. Inset: Stern-Volmer plot for emission quenching of **9**.

Fig. S6. Time-resolved emission spectra of complex **3** (2.5×10^{-5} M) with excitation at 355 nm in the mixed CH₃CN/H₂O (v/v, 1:1) in the absence of Pt nanoparticles (4.3 $\times 10^{-5}$ M).

Fig. S7. Changes in the absorption spectra of 5 $(3.3 \times 10^{-5} \text{ M})$ in acetonitrile upon addition of various concentrations of TEOA $(0-2.1 \times 10^{-1} \text{ M})$.

Fig. S8. ¹H NMR spectra of complexes **2–5** in DMSO-d₆.

Fig. S9. ¹H NMR spectra of complexes **2–5** in DMSO- d_6/D_2O (v/v, 2:1), in the presence of excessive amounts of TEOA.

Fig. S10. Hydrogen production from system containing TEOA (2.2×10^{-2} M), complexes **6–8** (4.4×10^{-5} M) and colloidal Pt (8.7×10^{-5} M) in CH₃CN/H₂O (v/v, 1:1) upon irradiation ($\lambda > 390$ nm) at pH 7.0. TONs are calculated based on the Pt(II) chromophore.