Diazaborolyl-boryl push-pull systems with ethynylene-arylene bridges as 'turn-on' fluoride sensors.

Lothar Weber^{*,a}, Daniel Eickhoff^a, Jan Kahlert^a, Lena Böhling^a, Andreas Brockhinke^a, Hans-Georg Stammler^a, Beate Neumann^a and Mark A. Fox^b

^aFakultät für Chemie der Universität Bielefeld
33615 Bielefeld, Germany
E-Mail: lothar.weber@uni-bielefeld.de
^bDepartment of Chemistry, Durham University, South Road, Durham, DH1 3LE, UK.

Contents

Additional photophysical data for 3 , 12 , 20 , [3·F]⁻ , [12·F]⁻ , 20 , [20·F] ⁻ and [20·2F] ²⁻	52
Fluoride titration absorption spectra for 20	33
Comparison of experimental and calculated geometric parameters of 3, 12 and [12·F] ⁻	54
Molecular orbital contributions for 3, 12, 20, $[3 \cdot F]^{-}$, $[12 \cdot F]^{-}$, 20', $[20' \cdot F]^{-}$ and $[20' \cdot 2F]^{2-}$	
	S5
TD-DFT data for 3 , 12 , [3·F] ⁻ and [12·F] ⁻	S5

		3	12	20
	λ _{abs} [nm]	342	374	344
avalahavana	λ_{em} [nm]	421	441	429
cyclonexane	ϵ [Lmol ⁻¹ cm ⁻¹]	21300	22500	22200
	$\Phi_{ m fl}$	0.99	0.83	0.94
	λ _{abs} [nm]	343	369	343
toluono	λ_{em} [nm]	458	473	454
toruene	ϵ [Lmol ⁻¹ cm ⁻¹]	17000	25200	37200
	$\Phi_{ m fl}$	0.71	0.72	0.72
	λ _{abs} [nm]	342	374	343
THE	λ_{em} [nm]	503	516	495
ІПГ	ϵ [Lmol ⁻¹ cm ⁻¹]	18800	24900	38200
	$\Phi_{ m fl}$	0.02	0.05	0.03
	λ _{abs} [nm]	342	368	344
	λ_{em} [nm]	511	525	505
CH_2CI_2	ε [Lmol ⁻¹ cm ⁻¹]	22600	18600	34300
	$\Phi_{ m fl}$	0.47	0.49	0.50
	λ _{abs} [nm]	335	354	334
CH CN	$\lambda_{em} [nm]$	391 / 550	394 / 567	342 / 546
CH3CN	$\epsilon [Lmol^{-1}cm^{-1}]$	9700	23000	4500
	$\Phi_{ m fl}$	0.16 / 0.03	0.13 / 0.08	0.02 / 0.06

Table S1: Absorption- and emission maxima of 3, 12, and 20 in different solvents.

		[3·F] ⁻	[12·F] ⁻	[20·F] ⁻	$[20.2F]^{2}$
	λ_{abs} [nm]	308	331	316	312
cyclonexane	$\lambda_{em} [nm]$	353	382	380	380
toluono	λ_{abs} [nm]	310	334	318	312
toiuelle	$\lambda_{em} [nm]$	353	384	396	389
THE	λ_{abs} [nm]	310	334	318	313
ППГ	$\lambda_{em} [nm]$	393	384	408	401
CH ₂ Cl ₂	λ_{abs} [nm]	312	334	316	313
	λ_{em} [nm]	399	390	407	407

Table S2: Absorption and emission maxima of $[3\cdot F]^{-}$, $[12\cdot F]^{-}$, $[20\cdot F]^{-}$ and $[20\cdot 2F]^{2-}$ in different solvents.

Figure S1: Emission spectra of 3, [3·F]⁻, 12 and [12·F]⁻ in different solvents.

Figure S2: Emission spectra of 20 in different solvents.

Figure S3: Absorption titration of 20 with TBAF in THF.

	3			12		[12·F] ⁻			
Bond lengths (Å)		exp.	calc.		exp.	calc.		exp. ^[a]	calc.
B-N	B(1)-N(1)	1.425(3)	1.439	B(1)-N(1)	1.425(3)	1.439	B(1)-N(1)	1.422(3)	1.447
	B(1)-N(2)	1.427(3)	1.439	B(1)-N(2)	1.422(3)	1.438	B(1)-N(2)	1.427(3)	1.448
В-С	B(1)-C(11)	1.528(3)	1.517	B(1)-C(11)	1.520(3)	1.516	B(1)-C(11)	1.533(3)	1.502
	B(2)-C(16)	1.565(3)	1.571	B(2)-C(16)	1.541(3)	1.550	B(2)-C(16)	1.646(3)	1.656
	B(2)-C(19)	1.581(3)	1.585	B(2)-C(17)	1.579(3)	1.586	B(2)-C(17)	1.667(3)	1.673
	B(2)-C(28)	1.578(3)	1.585	B(2)-C(26)	1.578(3)	1.585	B(2)-C(26)	1.648(3)	1.669
D_Ual							P(2) E(1)	1 477(2)	1 454
	C(11) C(12)	1 205(2)	1 221	C(11) C(12)	1 207(2)	1 222	B(2)- $F(1)$	1.477(2)	1.434
L-L	C(11)-C(12)	1.203(3)	1.221	C(11)-C(12)	1.207(3)	1.225	C(11)-C(12)	1.211(5) 1.422(2)	1.227
	C(12)-C(13)	1.437(2)	1.424	C(12)-C(13)	1.425(3)	1.400	C(12)-C(13)	1.422(3)	1.400
	C(13)-C(14)	1.398(3)	1.411	C(13)-C(14)	1.3/1(3)	1.390	C(13)-C(14)	1.378(3)	1.388
	C(14)-C(15)	1.390(3)	1.389	C(14)-C(15)	1.404(3)	1.409	C(14)-C(15)	1.411(3)	1.413
	C(15)-C(16)	1.403(3)	1.412	C(15)-C(16)	1.375(3)	1.391	C(15)-C(16)	1.383(3)	1.387
	C(16)-C(17)	1.401(3)	1.412						
	C(17)-C(18)	1.381(3)	1.389						
	C(13)-C(18)	1.402(3)	1.411						
C-N	N(1)-C(1)	1.395(2)	1.395	N(1)-C(1)	1.392(2)	1.395	N(1)-C(1)	1.396(3)	1.392
	N(2)-C(2)	1.401(2)	1.395	N(2)-C(2)	1.391(2)	1.395	N(2)-C(2)	1.396(3)	1.392
	N(1)-C(7)	1.455(2)	1.456	N(1)-C(7)	1.460(3)	1.457	N(1)-C(7)	1.463(3)	1.455
	N(2)-C(9)	1.463(2)	1.456	N(2)-C(9)	1.462(3)	1.457	N(2)-C(9)	1.459(3)	1.454
<u>C-8</u>				S(1)-C(13)	1 711(2)	1 748	S(1)-C(13)	1 734(2)	1 763
				S(1)-C(16)	1.722(2)	1.755	S(1)-C(16)	1.732(2)	1.743
Bond Angles (°)									
С-С-С	C(11)-C(12)-C(13)	178.8(2)	180.0	C(11)-C(12)-C(13)	178.2(3)	179.2	C(11)-C(12)-C(13)	178.7(2)	179.2
В-С-С	B(1)-C(11)-C(12)	177.8(2)	179.9	B(1)-C(11)-C(12)	176.4(2)	179.7	B(1)-C(11)-C(12)	173.5(2)	179.9

[a] Bond lengths and bond angles of all four independent molecules in the unit cell were essentially identical within 3 esds. Thus only data of molecule A are shown here.

Table S3: Comparison of experimental and calculated geometric parameters of 3, 12 and [12·F]⁻.

MO- number		eV	Borole	Bridge	B-boryl	Mes-groups
144	L+3	0.01	0	8	3	89
143	L+2	-0.13	0	87	0	13
142	L+1	-0.66	20	34	14	32
141	LUMO	-1.97	б	46	31	16
140	HOMO	-5.24	83	16	1	1
139	H-1	-5.82	100	0	0	0
138	H-2	-6.03	0	4	1	94
137	H-3	-6.12	2	6	2	90

 Table S4: Molecular orbital contributions of compound 3. Co-planar geometry.

MO- number		eV	Borole	Bridge	B-boryl	Mes-groups
145	L+3	0.16	6	22	0	72
144	L+2	0.00	0	6	3	91
143	L+1	-0.69	18	38	16	28
142	LUMO	-2.1	7	55	26	12
141	HOMO	-5.24	77	21	1	2
140	H-1	-5.86	100	0	0	0
139	H-2	-6.06	5	11	1	83
138	H-3	-6.07	4	10	1	85

Table S5: Molecular orbital contributions of compound 12. Co-planar geometry.

MO-						
number		eV	$C_6H_4(NEt)_2$	B-Borole	Bridge	BMes ₂ F
149	L+3	2.98	0	0	81	19
148	L+2	2.41	100	0	0	0
147	L+1	2.25	72	0	26	1
146	LUMO	1.33	31	18	50	2
145	HOMO	-2.59	1	0	14	85
144	H-1	-2.72	0	0	1	99
143	H-2	-2.84	14	0	50	35
142	H-3	-2.97	1	0	3	96

Table S6: Molecular orbital contributions of compound [3·F].Co-planargeometry.

MO- number		eV	C ₆ H ₄ (NEt) ₂	B-Borole	Bridge	BMes ₂ F
150	L+3	2.94	9	11	76	5
149	L+2	2.51	100	0	0	0
148	L+1	2.29	75	0	24	1
147	LUMO	1.36	25	16	57	2
146	HOMO	-2.49	13	0	65	21
145	H-1	-2.71	2	0	11	87
144	H-2	-2.77	1	0	2	97
143	H-3	-3.02	0	0	1	99

Table S7: Molecular orbital contributions of compound [12·F].Co-planargeometry.

3.18 eV

Figure S4: Frontier orbitals of 20'.

MO- number		eV	Borolyl-π- borylunit 1	Borolyl-π- borylunit 2	C ₆ H ₄ -Spacer
270	L+10	-0.29	24	36	40
269	L+9	-0.46	55	44	1
268	L+8	-0.46	43	55	3
267	L+7	-0.57	16	10	74
266	L+6	-0.62	81	0	19
265	L+5	-0.62	0	89	10
264	L+4	-0.70	19	18	64
263	L+3	-1.08	49	51	0
262	L+2	-1.12	49	47	4
261	L+1	-2.34	69	30	0
260	LUMO	-2.36	30	69	1
259	HOMO	-5.54	43	42	15
258	H-1	-5.71	49	50	1
257	H-2	-6.02	42	43	16
256	H-3	-6.33	49	47	4
255	H-4	-6.48	0	100	0
254	H-5	-6.49	100	0	0
253	H-6	-6.52	100	0	0
252	H-7	-6.52	0	100	0
251	H-8	-6.58	100	0	0
250	H-9	-6.59	0	100	0
249	H-10	-6.61	97	3	0

Table S8: Molecular orbital contributions of 20'.

Figure S5: Frontier orbitals of $[20' \cdot 2F]^{2-}$.

MO- number		eV	Borolyl-π- borate unit 1	Borolyl-π- borate unit 2	C ₆ H ₄ - Spacer
280	L+10	3.05	59	44	-2
279	L+9	2.99	114	64	-77
278	L+8	2.98	48	48	4
277	L+7	2.94	37	63	0
276	L+6	2.83	48	47	5
275	L+5	2.54	-3	-3	108
274	L+4	2.52	6	6	89
273	L+3	2.47	-4	-4	110
272	L+2	2.31	20	19	62
271	L+1	1.95	48	52	0
270	LUMO	1.88	50	45	5
269	HOMO	-2.16	49	47	4
268	H-1	-2.21	48	51	0
267	H-2	-2.34	24	74	2
266	H-3	-2.37	75	25	0
265	H-4	-2.44	0	100	0
264	H-5	-2.46	100	0	0
263	H-6	-2.56	1	99	0
262	H-7	-2.58	99	1	0
261	H-8	-2.60	0	100	0
260	H-9	-2.63	100	0	0
259	H-10	-2.80	42	40	18

Table S9: Molecular orbital contributions of $[20' \cdot 2F]^{2-}$.

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is C The Royal Society of Chemistry 2012

Figure S6: Frontier orbitals of [20'•F]⁻.

MO- number		eV	Borolyl-π- borylunit	Borolyl-π- borate unit	C ₆ H ₄ -Spacer
275	L+10	0.97	72	7	21
274	L+9	0.94	60	0	41
273	L+8	0.87	15	27	58
272	L+7	0.74	60	34	6
271	L+6	0.72	70	20	10
270	L+5	0.71	63	29	8
269	L+4	0.59	100	0	0
268	L+3	0.40	100	0	0
267	L+2	0.38	100	0	0
266	L+1	-0.04	99	0	1
265	LUMO	-1.37	100	0	0
264	HOMO	-3.10	0	100	0
263	H-1	-3.25	0	100	0
262	H-2	-3.31	0	99	1
261	H-3	-3.39	0	100	0
260	H-4	-3.43	0	100	0
259	H-5	-3.96	4	89	7
258	H-6	-4.22	47	39	15
257	H-7	-4.24	3	96	1
256	H-8	-4.35	8	91	0
255	H-9	-4.47	34	60	5
254	H-10	-4.53	16	79	4

Table S10: Molecular orbital contributions of [20'•F]⁻.

	Obs.			Calc. B3LYP		Calc. CAM-B3LYP		
	λ_{max} (eV)	λ _{max} (eV)	Osc. Str.	Major transition (κ_{ia})	$\lambda_{max}(eV)$	Osc. Str.	Major transitions	
3	3.63	2.98	0.0006	HOMO \rightarrow LUMO (0.70)	3.98	0.11 39	HOMO-2 \rightarrow LUMO (0.66)	
12	3.34	2.89	0.0000	HOMO \rightarrow LUMO (0.70)	3.85	0.71 65	HOMO-2 \rightarrow LUMO (0.68)	
[3·F] ⁻	4.03	3.74	0.0010	HOMO-2 → LUMO (0.40) HOMO → LUMO (0.52)	4.46	0.00 10	HOMO → LUMO+3 (0.27) HOMO-2 → LUMO (0.47)	
[12·F] ⁻	3.75	3.33	0.0002	HOMO \rightarrow LUMO (0.64)	3.91	0.00 04	HOMO → LUMO+3 (0.29) HOMO → LUMO (0.53)	

Table S11:	TD-DFT	data	for the	first	vertical	excitation	for	perpendicular	geometries	using
B3LYP and	CAM-B3	LYP	functio	nals						

	eV	Borole	Bridge	Boryl-B	Mes-groups
L+3	-0.14	0	88	0	12
L+2	-0.30	60	35	1	4
L+1	-0.43	8	46	9	37
LUMO	-1.91	1	45	35	19
HOMO	-5.30	92	8	0	0
H-1	-5.80	100	0	0	0
H-2	-6.04	0	4	1	94
H-3	-6.09	1	30	1	68
	L+3 L+2 L+1 LUMO HOMO H-1 H-2 H-3	eV L+3 -0.14 L+2 -0.30 L+1 -0.43 LUMO -1.91 HOMO -5.30 H-1 -5.80 H-2 -6.04 H-3 -6.09	eVBoroleL+3-0.140L+2-0.3060L+1-0.438LUMO-1.911HOMO-5.3092H-1-5.80100H-2-6.040H-3-6.091	eVBoroleBridgeL+3-0.14088L+2-0.306035L+1-0.43846LUMO-1.91145HOMO-5.30928H-1-5.801000H-2-6.0404H-3-6.09130	eVBoroleBridgeBoryl-BL+3-0.140880L+2-0.3060351L+1-0.438469LUMO-1.9114535HOMO-5.309280H-1-5.8010000H-2-6.04041H-3-6.091301

 Table S12: Molecular orbital contributions of compound 3. Perpendicular geometry.

MO- number		eV	Borole	Bridge	Boryl-B	Mes-groups
145	L+3	0.00	0	5	3	92
144	L+2	-0.45	11	46	12	32
143	L+1	-0.58	46	47	2	6
142	LUMO	-2.01	2	55	30	14
141	HOMO	-5.36	92	8	0	0
140	H-1	-5.85	100	0	0	0
139	H-2	-5.93	2	57	1	41
138	H-3	-6.07	0	4	1	94

 Table S13: Molecular orbital contributions of compound 12. Perpendicular geometry.

MO-						
number		eV	$C_6H_4(NEt)_2$	Borole-B	Bridge	BMes ₂ F
149	L+3	2.65	57	15	28	0
148	L+2	2.37	100	0	0	0
147	L+1	2.04	4	5	88	4
146	LUMO	1.56	59	21	20	0
145	HOMO	-2.56	0	0	12	88
144	H-1	-2.69	0	0	1	99
143	H-2	-2.87	1	0	49	50
142	H-3	-2.96	0	0	11	88

 Table S14: Molecular orbital contributions of compound [3·F]⁻. Perpendicular geometry.

MO- number		eV	C ₆ H ₄ (NEt) ₂	Borole-B	Bridge	BMes ₂ F
150	L+3	2.60	62	10	28	1
149	L+2	2.43	100	0	0	0
148	L+1	1.96	3	4	90	3
147	LUMO	1.55	52	22	26	0
146	HOMO	-2.50	1	1	67	31
145	H-1	-2.68	0	0	16	83
144	H-2	-2.73	0	0	5	95
143	H-3	-2.98	0	0	1	99

 Table S15: Molecular orbital contributions of compound [12·F]⁻. Perpendicular geometry.