S1

Supporting information

for

Phosphate Binding to the [Au(IPr)] Moiety: Inner vs Outer Sphere Coordination Behaviour

Sylvain Gaillard,^{*a,b*} Diane Rix,^{*c*} Alexandra M. Z. Slawin,^{*a*} Jérôme Lacour^{*c*,*} and Steven P. Nolan^{*a*,*}

[a] Laboratoire de Chimie Moléculaire et Thioorganique, UMR 6507, INC3M, FR 3038,

ENSICAEN-Université de Caen, 6 bd. Maréchal Juin 14050 Caen (France).

[b] University of St Andrews, School of Chemistry, St Andrews, KY16 9ST, United Kingdom. Fax: +44 (0)1334 463763; Tel: +44(0)1334 463808; E-mail: <u>snolan@st-andrews.ac.uk</u>

[c] Département de chimie organique, Université de Genève, 30 quai Ernest Ansermet, CH-

1211, Genève 4, Switzerland. Tel: +41 22 379 60 62; E-mail: jerome.lacour@unige.ch

Table of Content

Part 1:	Preparation of compounds 2-5	S3-6
Part 2:	Crystallographic data of complexes 4 and 5	S7
Part 3:	Copies of NMR Spectra of compounds 2-5	S8-23

Part 1: Preparation of compounds 2-5

General Considerations. All reactions were carried out in air unless otherwise stated. Technical solvents were used and purchased from Aldrich. NMR spectra were recorded on a 300 MHz or 400 MHz Brucker spectrometer. Elemental analyses were performed by the analytical services at the University of St Andrews. For optical properties, measurement were performed on Perkin Elmer Model 341 polarimeter (wavelength = 589 nm, T = 20°C, solvent = CHCl₃). Compounds **1**¹ and **2**² were prepared and characterized by comparison with the ¹H NMR data reported in the literature.

Synthesis of [A-TRISPHAT-N][HNⁿBu₃] (A-3). [rac-TRISPHAT-N][n-Bu₃NH] (600 mg, 0.7 mmol) was dissolved in 21 mL of chloroform. N-benzylcinchonidinium chloride (296 mg, 0.7 mmol) was added in one portion to the clear solution. The alkaloid dissolved immediately upon stirring and 2 min later the formation of a white precipitate was observed. The reaction was stirred at 25 °C for 24 hours to ensure maximum precipitation of [Δ -TRISPHAT-N] [Nbenzylcinchonidinium]. The crude reaction mixture was filtered over Millipore system filtration XX15 047 00 (Whatman filter paper type 595, 4-7 µm, 45 mm diameter). The white powder was washed with cold CHCl₃ and collected. The mother liquor was concentrated, dissolved in CHCl₃ (6 mL) and filtered over a Millipore. The resulting mother liquor was concentrated, filtered on Al₂O₃ (elution CH₂Cl₂) and precipitated in CHCl₃/pentane. [A-TRISPHAT-N] [HNⁿBu₃] Λ -3 was isolated as a white solid (53% yield, 159 mg). mp > 248 °C (decomposition); ¹H NMR (400 MHz, CD₃CN): δ 7.52 (d, J = 2.2 Hz, 1H, CH aromatic), 7.11-7.08 (m, 1H, CH aromatic), 6.70 (s broad, 1H, NH), 3.11-2.99 (m, 6H, N(CH₂)₃), 1.67-1.57 (m, 6H, N(CH₂CH₂)₃), 1.41-1.29 (m, 6H, N(CH₂CH₂CH₂)₃), 0.95 (t, J = 7.4 Hz, 9H, N(CH₂CH₂CH₂CH₃)₃) ppm; ³¹P NMR (162 Hz, CD₃CN): -84.4 ppm; ¹³C NMR (100 MHz, CD₃CN): δ 154.5 (d, J = 12.0 Hz, 1C), 142.8-142.6 (m, 4C), 140.3 (s, 1C), 136.7 (s, 1CH),

¹ S. Gaillard, A. M. Z. Slawin and S. P. Nolan, *Chem. Commun.* 2010, 46, 2742-2744.

² J. Lacour, C. Ginglinger, C. Grivet and G. Bernardinelli Angew. Chem. Int. Ed. 1997, 36, 608-610.

124.5 (s, 1C), 123.4 (d, J = 4.6 Hz, 1C), 123.4 (s, 1C), 118.6 (s, 1C), 117.2 (d, J = 17.7 Hz, 1CH), 114.6 (d, J = 19.3 Hz, 1C), 114.6 (d, J = 19.7 Hz, 1C), 114.6 (d, J = 19.3 Hz, 1C), 114.5 (d, J = 19.6 Hz, 1C), 114.5 (d, J = 19.6 Hz, 1C), 54.0 (s, 3CH₂), 26.2 (s, 3CH₂), 20.4 (s, 3CH₂), 13.7 (s, 3CH₃); $[\alpha]_D^{20} = +335$ (MeOH, c=0.101); IR (neat): 2964, 1593, 1445, 1388, 1234, 990, 819, 655 cm⁻¹; HRMS (ESI positif): *m/z* calculated for C₁₂H₂₈N 186.2216 observed 186.2211; HRMS (ESI negatif): *m/z* calculated for C₁₇H₂N₁O₆P₁Cl₉ 661.6811 observed 661.6787; UV/Vis (CH₃CN, 1.01·10⁵ M) λ_{max} (ε) 217 (5.18·10⁴), 295 (1.8·10³); CD (CH₃CN, 1.01·10⁵ M, 20°C) λ (Δε) 210 (-14), 220 (+28), 242 (+3).

Synthesis of [Au(IPr)(Bu₃N)][rac-TRISPHAT] (4). [Au(OH)(IPr)] 1 (20 mg, 0.033) mmol) and [rac-TRISPHAT] [HNⁿBu₃] 2 (31.7 mg, 0.033 mmol) were introduced into a vial containing benzene (0.33 mL). The reaction was stirred at room temperature for 14h. Solvent was reduced by half under vacuum and pentane (4 mL) was added and the resulting precipitate was collected on a frit. Solid was washed with pentane (3 x 3 mL) and dried under vacuum to afford crude 4 as a white microcrystalline solid. Solid was recrystallized by slow gas diffusion of pentane into a solution containing crude 4 in dichloromethane to give pure 4 as colorless crystals (47.1 mg, 93%). Synthesis of [Au(IPr)(Bu₃N)][A-TRISPHAT] (A-4). [Au(OH)(IPr)] 1 (136.6 mg, 0.227 mmol) and [A-TRISPHAT][HNⁿBu₃] A-2 (216.6 mg, 0.227 mmol) were introduced into a vial containing benzene (2.2 mL). The reaction was stirred at room temperature for 14h. Solvent was reduced by half under vacuum and pentane (4 mL) was added and the resulting precipitate was collected on a frit. Solid was washed with pentane (3 x 3 mL) and dried under vacuum to afford crude A-4 as a white microcrystalline solid. Solid was recrystallized by slow gas diffusion of pentane into a solution containing crude Λ -4 in dichloromethane to give pure Λ -4 as colorless crystals (324.5 mg, 93%). ¹H NMR (300 MHz, CDCl₃): δ 7.56 (t, J = 7.8 Hz, 2H, CH aromatic IPr), 7.51 (s, 2H, CH imidazole IPr), 7.33 (d, J = 7.8 Hz, 4H, CH aromatic IPr), 2.56-2.44 (m, 10H, 4 CH CH(CH₃)₂ and 6 N-CH₂ of Bu₃N), 1.29-1.13 (m, 30H, 24 CH(CH₃)₂ and 6 CH₂ of Bu₃N),

S5

1.10-0.98 (m, 6H, CH₂ of Bu₃N), 0.75 (t, J = 7.2 Hz, 9H, CH₃ of Bu₃N) ppm. ³¹P NMR (162 Hz, CDCl₃): -81.0 (s, TRISPHAT) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 168.7 (s, C carbene), 145.6 (s, C aromatic IPr), 142.1 (d, J = 6.5 Hz, CCl TRISPHAT), 133.5 (s, C aromatic IPr), 131.3 (s, CH imidazole IPr), 124.8 (CH aromatic IPr), 124.4 (s, CH aromatic IPr), 122.2 (s, CCl TRISPHAT), 113.8 (d, J = 19.8 Hz, CO TRIPSHAT), 59.2 (s, N-CH₂ Bu₃N), 28.9 (s, CH(CH₃)₂), 28.4 (s, CH₂ Bu₃N), 24.4 (s, CH(CH₃)₂), 24.1 (s, CH(CH₃)₂), 20.2 (s, CH₂ Bu₃N), 13.6 (s, CH₃ Bu₃N) ppm. [α]²⁰_D = +207 (C = , CHCl₃). Anal. Calcd for C₅₇H₆₃AuCl₁₂N₃O₆P: C, 44.47; H, 4.12; N, 2.73. Found: C, 44.73; H, 3.75; N, 2.42.

Synthesis of [Au(IPr)][rac-TRISPHAT-N] (5). [Au(OH)(IPr)] 1 (30 mg, 0.0498 mmol) and [rac-TRISPHAT-N]'[HNⁿBu₃] **3** (42.5 mg, 0.0498 mmol) were introduced into a vial containing benzene (0.5 mL). The reaction was stirred at 60°C for 14h. Solvent was reduced by half under vacuum and pentane (4 mL) was added and the resulting precipitate was collected on a frit. Solid was washed with pentane (3 x 3 mL) and dried under vacuum to afford crude 5 as a white microcrystalline solid. Solid was recrystallized by slow gas diffusion of pentane into a solution containing crude 5 in dichloromethane to give pure 5 as colorless crystals (60.0 mg, 97%). Synthesis of [Au(IPr)][A-TRISPHAT-N] (A-5). [Au(OH)(IPr)] 1 (35.5 mg, 0.0589 mmol) and [A-TRISPHAT-N][HNⁿBu₃] A-3 (50 mg, 0.0589 mmol) were introduced into a vial containing benzene (0.6 mL). The reaction was stirred at 60°C for 14h. Solvent was reduced by half under vacuum and pentane (4 mL) was added and the resulting precipitate was collected on a frit. Solid was washed with pentane (3 x 3 mL) and dried under vacuum to afford crude Λ -5 as a white microcrystalline solid. Solid was recrystallized by slow gas diffusion of pentane into a solution containing crude Λ -5 in dichloromethane to give pure Λ-5 as colorless crystals (67.8 mg, 95%). ¹H NMR (400 MHz, CDCl₃): δ 7.52 (t, J = 7.8 Hz, 2H, CH aromatic IPr), 7.33 (dd, J = 7.8, 1.1 Hz, 2H, CH aromatic IPr), 7.27 (s, 2H, TRISPHAT-N), 7.24 (dd, J = 7.8, 1.1 Hz, 2H, CH aromatic IPr), 6.95 (dd, J = 2.0, 1.1 Hz,

1H, CH imidazole IPr), 6.81 (dd, J = 2.01, 0.5 Hz, 1H, CH imidazole IPr), 2.53 (sept, J = 6.9 Hz, 2H, CH(CH₃)₂ IPr), 2.42 (sept, J = 6.9 Hz, 2H, CH(CH₃)₂ IPr), 1.43 (d, J = 6.9 Hz, 6 CH(CH₃)₂ IPr), 1.23 (t, J = 6.4 Hz, 12 CH(CH₃)₂ IPr), 1.04 (d, J = 6.9 Hz, 6 CH(CH₃)₂ IPr) ppm. ³¹P NMR (121 Hz, CDCl₃): -83.6 (s, TRISPHAT-N) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 169.5 (s, C carbene), 155.5 (d, J = 14.0 Hz, CO pyr TRISPHAT-N), 145.8 (s, C aromatic IPr), 145.4 (s, C aromatic IPr), 142.4 (s, CCl pyr TRISPHAT-N), 141.5 (d, J = 6.8 Hz, 2xCCl TRISPHAT-N), 141.5 (d, J = 6.8 Hz, 2xCCl TRISPHAT-N), 141.4 (d, J = 6.7 Hz, CCl TRISPHAT-N), 141.3 (d, J = 7.2 Hz, CCl TRISPHAT), 133.3 (s, C aromatic IPr), 132.7 (s, CH pyr TRISPHAT-N), 131.3 (s, CH imidazole IPr), 124.6 (CH aromatic IPr), 124.3 (CH aromatic IPr), 124.0 (CH aromatic IPr), 123.0 (s, CCl TRISPHAT-N), 122.9 (d, J = 23.7 Hz, CO Pyr TRIPHAT-N), 114.5 (d, J = 19.6 Hz, CO TRIPSHAT-N), 114.1 (d, J = 20.2 Hz, CO TRIPSHAT-N), 114.0 (d, J = 20.5 Hz, CO TRIPSHAT-N), 114.1 (d, J = 20.2 Hz, CO TRIPSHAT-N), 29.0 (s, CH(CH₃)₂), 28.8 (s, CH(CH₃)₂), 24.8 (s, CH(CH₃)₂), 24.4 (s, CH(CH₃)₂), 23.6 (s, CH(CH₃)₂) ppm. Anal. Calcd for C₄₄H₃₉AuCl₉N₃O₆P: C, 42.22; H, 3.06; N, 3.36. Found: C, 42.35; H, 2.75; N, 3.25.

	[Au(IPr)][TRISPHAT] 4	[Au(IPr)][TRISPHAT-N] 5
Formula	$C_{25}H_{63}AuCl_{12}N_3O_6P, CH_2Cl_2$	C ₄₄ H ₃₈ AuCl ₉ N ₃ O ₆ P, 2CH ₂ Cl ₂
M/g.mol ⁻¹	1624.37	1421.61
Crystal system	Triclinic	Triclinic
Space group	<i>P</i> -1	<i>P</i> -1
a/ Å	15.203(2)	13.280(5)
b/ Å	20.357(3)	13.599(5)
c/ Å	24.945(4)	16.803(5)
α / °	110.743(8)	79.10(3)
eta / \circ	98.496(7)	68.36(2)
γ/ °	94.591(7)	81.50(3)
$V/ Å^3$	7066.8(19)	2759.8(16)
Ζ	4	4
$\rho calcd$ / g.cm ⁻³	1.527	1.711
μ (Mo K _{α})/ mm ⁻¹	2.681	3.372
<i>T</i> / K	93(2)	93(2)
No of reflections	45358	16903
No of unique		·
reflections	25107	6537
Terrections		
$R_{\rm int}$	0.0488	0.1414
$R1, wR_2 (I > 2\sigma(I))$	0.0690, 0.1855	0.1743, 04154
$R1$, w R_2 (all data)	0.0997, 0.2146	0.2107, 0.4632
GOF	1.077	1.442

Part 2: Crystallographic data of complexes 4 and 5.

[*rac*-TRISPHAT]·[HNBu₃] **2** [*rac*-TRISPHAT]·[HNBu₃], ¹H NMR, CD₂Cl₂

[*rac*-TRISPHAT]·[HNBu₃], ³¹PNMR, CD₂Cl₂

140	120	100	80	60	40	20	0	-20	-40	-60	-80	-100	-120	-140	-160	-180	-200	-220	-240

 $[\Lambda$ -TRISPHAT]·[HNBu₃] Λ -2

[A-TRISPHAT]·[HNBu₃], ¹H NMR, CD₂Cl₂

---- 6.36

33.35 33.35 33.35 33.35 33.35 33.35 33.35 33.35 33.35 33.35 33.35 33.35 33.35 11.66 11.66 11.66 11.66 11.66 0.85 0.83 0.80 0.80

[A-TRISPHAT]·[HNBu₃],³¹PNMR, CD₂Cl₂

 120 140 100 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 [rac-TRISPHAT-N]·[HNBu₃] 3

[*rac*-TRISPHAT-N]·[HNBu₃], ¹H NMR, CD₂Cl₂

[*rac*-TRISPHAT-N]·[HNBu₃], ³¹PNMR, CD₂Cl₂

+ HNBu₃

, , , , , ,																			
140	120	100	80	60	40	20	0	-20	-40	-60	-80	-100	-120	-140	-160	-180	-200	-220	-240

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is © The Royal Society of Chemistry 2012

 $[\Lambda$ -TRISPHAT-N]·[HNBu₃] Λ -3

7.59 7.10 6.70 6.70	3.07 3.07 3.05 3.03 3.05 3.05 3.05 1.165 1.165 1.166 1.166 1.166 1.160 1.1
$\forall \forall $	

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is C The Royal Society of Chemistry 2012

S17

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is C The Royal Society of Chemistry 2012

-81,0

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is © The Royal Society of Chemistry 2012

-83,8