Supporting Information for

Fixation of carbon dioxide and related small molecules by a bifunctional frustrated pyrazolylborane Lewis pair

Eileen Theuergarten, Janin Schlösser, Danny Schlüns, Matthias Freytag, Constantin

G. Daniliuc, Peter G. Jones and Matthias Tamm*

* Institut für Anorganische und Analytische Chemie, Technische Universität

Carolo-Wilhelmina, Hagenring 30, D-38106 Braunschweig, Germany.

Fax: +49 (251) 391-5309; Tel: +49 (251) 391-5387; E-mail: m.tamm@tu-bs.de

Contents:

- **1.** Computational Details
- 2. Energies of all optimized structures
- 3. Figure S1: Relative energies of stationary points on the 1 + CO₂ hypersurface.
- 4. Calculated structures and XYZ coordinates

1. Computational Details:

All computations were performed using the hybrid density functional method M06-2X implemented in the Gaussian09 program.^[1] For all main-group elements (C, H, N, B, F) the all-electron triple- ζ basis set (6-311++G**) was used.^[2]

- Gaussian 09, Revision A.1, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.
- [2] R. Krishnan, J. S. Binkley, R. Seeger, J. A. Pople, J. Chem. Phys., 1980, 72, 650.

2. Energies of all optimized structures:

Compound	E(0 K) ^a [Ha]	H(298 K) ^b [Ha]	G(298 K) ^b [Ha]
pyrazolylborane 1	-2020.477314	-2020.048934	-2020.152469
CO_2 adduct 3	-2209.099688	-2208.652493	-2208.755688
CO_2	-188.5748808	-188.559323	-188.583543
Transition state (TS)	-2209.051971	-2208.607065	-2208.712996
van der Waals complex (vdW)	-2209.063577	-2208.617514	-2208.729232

^{*a*}DFT energy excl. ZPE.

^{*b*} standard conditions T = 298.15 K and p = 1 atm.

3. Figure S1

Fig. S1 Relative energies (kcal mol⁻¹) for stationary points on the $\mathbf{1} + CO_2$ hypersurface. Values correspond to ΔE = zero-point uncorrected M06-2X/6-311++G(d,p) electronic energies, ΔH°_{298} = enthalpies at 298 K (in round brackets), ΔG°_{298} = Gibbs free energies at 298 K [in square brackets].

Calculated structure of the pyrazolylborane 1

В	0.117000	0.009200	0.089500
 NT	0 0 0 0 0 0 0 0	0 (27200	0 500000
IN	-2.068500	-0.637200	-0.509600
Ν	-0.894500	-1.004200	0.124800
ਜ	1 222100	2 127900	-1 568800
-	1.222100	2.12/900	1 5100000
F,	0.438900	4.682900	-1.517300
F	-1.538800	5.466700	0.162300
F	-2 727900	3 670900	1 799000
E	2.727500	1 11 4000	1.755000
F.	-1.956000	1.114900	I.//8600
F	1.285500	-1.663500	-1.929100
F	3 922300	-1 925700	-2 377100
E	5.522500	1.525700	2.577100
F.	5.700800	-0.721700	-0.730700
F	4.838500	0.771400	1.356900
ਜ	2 196800	1 076100	1 788200
-	2.190000	2.000000	1.700200
C	-0.9/8100	-2.322800	0.5///00
С	-2.201100	-2.776300	0.176800
C	-2 834900	-1 690900	-0 507900
ä	4 207000	1 07400	1 1 2 2 2 0 0
C	-4.20/800	-1.68/400	-1.133200
С	-0.013000	-3.010200	1.531300
С	0.347300	-2.060800	2.685900
c	1 262500	2 521200	0.046000
C	1.203300	-3.331300	0.040900
С	-0.733400	-4.229300	2.131200
С	-4.520900	-0.313300	-1.727400
Ĉ	-5 240100	-2 027000	_0 047000
C	-3.240100	-2.02/900	-0.047000
С	-4.250300	-2.756100	-2.235500
С	1.652700	-0.289700	-0.049700
C	2 599100	0 328600	0 756900
ä	2.000	1 046400	1 110100
C	2.135900	-1.046400	-1.110100
С	3.960500	0.185700	0.554100
С	3,490300	-1,195200	-1.357800
a	4 402000	0 570000	0 515000
C	4.403900	-0.578600	-0.515900
С	-0.346700	1.507900	0.088700
С	-1.362000	1.953600	0.933000
C	0 249600	2 470500	-0 718800
<u> </u>	0.240000	2.470300	0.710000
С	-1.768600	3.275800	0.970700
С	-0.142800	3.798500	-0.716700
C	-1 157000	4 200300	0 137300
	2 621000	2 741 600	0.10/000
н	-2.631000	-3./41600	0.386900
Н	-0.554000	-1.712500	3.196300
н	0 973000	-2 588800	3 410200
11	0.006700	1 106200	2 240200
н	0.900/00	-1.100200	2.349200
Н	1.027200	-4.049500	-0.085200
Н	1.973700	-2.734700	0.636500
ц	1 761600	-4 238800	1 51/700
11	1.01000	7.230000	1.014/00
Н	-1.666100	-3.941300	2.620200
Н	-0.953000	-4.976300	1.364500
н	-0 084900	-4 697000	2 875000
11	0.001000		2.0/0000

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is O The Royal Society of Chemistry 2012

Н	-4.481800	0.461700	-0.959200
Н	-3.800900	-0.049800	-2.504200
Н	-5.522400	-0.323600	-2.164800
Н	-6.244700	-2.034700	-0.478400
Н	-5.053100	-3.013000	0.388300
Н	-5.213800	-1.288000	0.756400
Н	-4.039500	-3.750000	-1.831900
Н	-5.242200	-2.780100	-2.694700
Н	-3.514200	-2.540800	-3.013600

Calculated structure of the CO₂ adduct 3

0.22960300	-0.05826300	-0.56860700
-2.13127300	-0.39010400	-0.60360600
-1.65809000	0.07597800	1.47315900
-3.04449600	-0.14842000	1.36257600
-1.13306400	-0.08610900	0.26110900
-3.33020900	-0.43246500	0.03869200
-3.75911100	-0.10876100	2.16516600
-4.66807100	-0.73114800	-0.59835100
-0.90060400	0.49817900	2.71434200
-0.73623100	2.03015400	2.68582000
-1.70241100	2.52562500	2.56308800
-0.29780300	2.35977900	3.63118000
-0.07716300	2.34803800	1.87650900
0.47314100	-0.17325600	2.81559600
0.37602900	-1.25588400	2.91307600
1.10888000	0.04360200	1.95802100
0.98415300	0.20589900	3.70371900
-1.72688100	0.11471700	3.95025500
-2.67070000	0.66295800	3.99124200
-1.93898200	-0.95691400	3.96804900
-1.16032500	0.36636500	4.84903200
-4.63260500	-2.10337400	-1.29066800
-3.92887600	-2.11553700	-2.12145900
-4.36346000	-2.88799800	-0.57902500
-5.62782600	-2.32640500	-1.68293500
-5.03514200	0.38051700	-1.59673800
-6.03537100	0.18409700	-1.99087600
-5.05022600	1.35377300	-1.09986500
-4.34020100	0.41795800	-2.43366100
-5.72980500	-0.76397900	0.50851300
-5.81132600	0.20034900	1.01630300
-6.69956000	-0.98639500	0.05949200
-5.51579100	-1.53833500	1.24943800

ВИССИСНСССНННСНННСНННСНННСНННСН

H H

С	0.89860700	1.40970300	-0.41760700
С	0.15459600	2.50885100	-0.83626800
С	2.13625900	1.70938000	0.13586600
С	0.59678000	3.81663200	-0.73773400
С	2.61646300	3.00561500	0.25883500
С	1.84350800	4.06497900	-0.18531000
С	1.16144700	-1.36166500	-0.32754000
С	2.37731400	-1.44723800	-0.99716600
С	0.79965000	-2.49380900	0.38902400
С	3.21313400	-2.54756000	-0.92192600
С	1.60721800	-3.61732200	0.49214300
С	2.82468200	-3.64158600	-0.16420800
F	-0.38367100	-2.56339500	1.02414000
F	1.21445900	-4.66964400	1.20424900
F	3.60826400	-4.70713700	-0.07940000
F	4.37389500	-2.57048200	-1.56555200
F	2.78417600	-0.42953200	-1.76104900
F	2.92567300	0.74303400	0.61933400
F	3.80390300	3.24011200	0.80457200
F	2.28645900	5.30816800	-0.07101200
F	-0.16010400	4.82790000	-1.14769500
F	-1.08239800	2.33017300	-1.32386300
0	-0.36470300	-0.20922000	-1.94086100
С	-1.64355400	-0.43177800	-1.97356700
0	-2.34856600	-0.63788100	-2.90863000

Calculated structure of carbon dioxide, CO₂

Calculated structure of the transition state (TS) associated with the CO_2 fixation by 1

В	-0.21227400	0.06567500	-0.24377600
N	1 94200200	-0 95019300	-0 62277900
11	1.94200200	0.95019500	0.02277900
C	1.08586400	-1.58941600	1.34760200
С	2.36753300	-2.09668800	1.24380200
N	0 84689100	-0 91100400	0 18277000
1N	0.04000100	0.91100400	0.10277000
C	2.86012000	-1.6//1/100	-0.00/63200
Н	2.88973800	-2.67748800	1.98374700
C	4 19671100	-1 97015500	-0 65067300
0	1.19071100	1 60202600	0.00007000
C	0.15993000	-1.68323600	2.54832600
С	-1.03822000	-2.60874100	2.27404800
н	-0 70228200	-3 56392000	1 86344100
	1.50420200	0.00002000	1.000344100
Н	-1.564/6100	-2.80418600	3.21199300
H	-1.75279400	-2.16651400	1.58232000
С	-0.32067800	-0.28974900	2.98109000
	0.52007000	0.24101200	2.25200400
н	0.52776500	0.34181300	3.25299400
H	-0.89261900	0.22453100	2.20698400
н	-0 97460800	-0 38381700	3 85220700
0	0 04010700	2 20002200	2 7100000
C	0.94910700	-2.28808200	3./1960800
H	1.25722700	-3.31387100	3.50402000
Н	1.83689000	-1.69552500	3,95078100
11	0.21215100	2 20007000	4 60660200
н	0.31215100	-2.30987800	4.60660300
С	4.76433300	-0.68176900	-1.26089300
Н	4,10056700	-0.29151500	-2.03334600
11	4 00001500	0.00050000	0 40261700
Н	4.88981500	0.08650200	-0.49361/00
H	5.73901100	-0.88252000	-1.71386400
С	4,00404900	-3.02574500	-1.75113700
11	4 06707000	2 26270700	2 21140000
п	4.90/0/900	-3.28370700	-2.21149900
H	3.58341700	-3.94577500	-1.33748000
Н	3,33281300	-2.65705000	-2.52841100
<u> </u>	5 16050200	2 50000400	0 40222600
C	5.10950200	-2.30808400	0.40332800
H	4.81956300	-3.45562700	0.82133000
Н	6.14570900	-2.68549300	-0.05436800
ц	5 30051200	-1 79/36100	1 22083800
11	5.50051200	1.//430100	1.22003000
C	-1./14/3800	-0.44539200	-0.27280300
С	-2.02414700	-1.65173400	-0.89743100
C	-2 78285000	0 22505700	0 31143500
c	2.70203000	0.22505700	0.51145500
C	-3.30/89300	-2.16/16/00	-0.94318600
С	-4.07815200	-0.26702300	0.30042800
C	-4 34042600	-1 47014800	-0 33444600
C	1.34042000	1 0000000	0.00075000
C	0.13302100	1.60830400	-0.093/5800
С	-0.61230400	2.57625700	-0.76431600
С	1,18704500	2.08536700	0.68086500
0	0 25252400	2 02000000	0.07252400
C	-0.33233400	3.93000000	-0.07333400
С	1.47202600	3.43830400	0.80131400
С	0.69855100	4.36305300	0.12197900
с Г	1 07665400	1 25626000	1 26420200
г	1.97003400	1.23626000	1.30420200
F	2.47980400	3.85226800	1.56067200
न	0.96286400	5.65521200	0.22695300
F	-1 00120500	1 91513300	_1 33125900
-	1.09120300	01J4JJ00	1.55125000
F.	-1.62796000	2.20419200	-1.54649300
F	-2.58868100	1.38103300	0.95238000
F	-5 06385500	0 40115100	0 88486200
-	5.00505500	1.05510200	0.00400200
F.	-5.57060900	-1.95543700	-0.35707700
F	-3.55800100	-3.32249700	-1.54602300
ਸ	-1 06401600	-2 38163100	-1 46722400
-	10406100	0.04120500	1 1 0 1 2 2 1 0 0
U	0.10486100	-0.04138500	-2.10938100
С	1.11838800	-0.40141600	-2.66090400
0	1,95317100	-0.66452900	-3.40478300
-	T. 200T / TOO	0.00102000	0.101/0000

Calculated structure of the van der Waals complex (vdW)

0.252	230000	0.062300	00 ·	-0.27370000
-1.893	300000	-0.742000	00	0.35430000
-0.83	460000	-2.190800	00	-1.04160000
-2.05	620000	-2.714400	00	-0.71320000
-0.74	160000	-0.987400	00	-0.36090000
-2.67	410000	-1.777700	0.0	0.16590000
-2.49	000000	-3.621400	00 -	-1.09820000
-4.03	640000	-1.888300	0.0	0.80980000
0 12	150000	-2 685500	00.	-2 11580000
1 10	510000	-3 316000	00 00 .	-1 54680000
1 17	570000	-4 008100	00 00 .	-0 73380000
1 01	120000	-3.973100		-2 33940000
2 10	520000	2 566400	00 .	1 10250000
2.10.	20000	-2.300400	00 .	-1.10330000
0.470	130000	-1.535600	00 .	-3.0/550000
-0.43	640000	-1.083400	00 ·	-3.48450000
1.05	600000	-0.750600	00 .	-2.59100000
1.07	120000	-1.919000	00	-3.90430000
-0.60	140000	-3.772900	00	-2.92760000
-0.823	310000	-4.646900	00	-2.31050000
-1.53	490000	-3.397700	00	-3.35240000
0.043	350000	-4.097900	00	-3.74680000
-4.512	290000	-0.516500	00	1.29480000
-3.83	630000	-0.107800	00	2.04470000
-4.57	00000	0.189900	00	0.46310000
-5.50	660000	-0.612500	00	1.74020000
-3.94	410000	-2.862000	00	1.99560000
-4.92	830000	-2.982400	00	2.45710000
-3.59	690000	-3.845500	00	1.66780000
-3.252	200000	-2.484000	00	2.75040000
-5.032	280000	-2.435900	00	-0.22270000
-4.75	960000	-3.442000	00	-0.54970000
-6.030	040000	-2.489400	00	0.22060000
-5.08	070000	-1.788700	00 -	-1.10200000
1 77	310000	-0 254100	00 -	
2 18	170000	-1 225400	00	0 84800000
2 78	190000	0 499300	00.	-0 65370000
3 51	170000	-1 435900	00	1 16090000
4 12	250000	0 201000	00	1.10000000
4.12.	70000	0.301000	00 .	-0.36430000
4.48	760000	-0.670500	00	0.53/10000
-0.26	340000	1.538/00	00 .	-0.32650000
0.33	/50000	2.581/00	00	0.3/120000
-1.390	J/0000	1.880300	00 ·	-1.08520000
-0.152	290000	3.875700	00	0.36180000
-1.89	/40000	3.168100	00 .	-1.12710000
-1.278	850000	4.167300	00	-0.39290000
-2.00	530000	0.975100	00	-1.84260000
-2.96	190000	3.457300	00	-1.86600000
-1.75	760000	5.399500	00	-0.41830000

B N C C N C H C C C H H H C Н Η H C Н Н H C H H H С Н Н Н С HHHCCCCCCCCCCFFF

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is The Royal Society of Chemistry 2012

F	0.44040000	4.83500000	1.06140000
F	1.42870000	2.36140000	1.10340000
F	2.46630000	1.45200000	-1.53310000
F	5.05730000	1.03000000	-0.98060000
F	5.76420000	-0.86960000	0.81590000
F	3.86940000	-2.36890000	2.03500000
F	1.29050000	-2.01330000	1.44610000
0	0.02010000	0.30890000	2.5200000
С	-0.95050000	-0.07180000	3.02340000
0	-1.90180000	-0.42870000	3.56980000