Supporting Information

Hydrothermal and Solid-state Transformation of Ruthenium-supported Keggin-type Heteropolytungstates $[XW_{11}O_{39}\{Ru(II)(benzene)(H_2O)\}]^{n-}$ (X = P (n = 5), Si (n = 6), Ge (n = 6)) to Ruthenium-substituted Keggin-type Heteropolytungstates.

Shuhei Ogo,^a Mayumi Miyamoto,^a Yusuke Ide,^a Tsuneji Sano^a and Masahiro Sadakane^{ab}*

a) Department of Applied Chemistry, Graduate School of Engineering, Hiroshima
University, 1-4-1 Kagamiyama, Higashi-Hiroshima, 739-8527, Japan

b) PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi,
Saitama, 332-0012, Japan

Figure S1. Cyclic voltammograms of reaction solutions obtained by reaction of $K_7[PW_{11}O_{39}]$ and $[Ru(benzene)Cl_2]_2$ at (red line) 215 °C, (black line) 170 °C, (blue line) 150 °C and (solid line with open circles) 100 °C for 5 hours. The reaction mixture (0.1 ml) was dissolved in 0.526 M KH₂PO₄ (1.9 ml) (pH ca. 4.3).

Figure S2. Cyclic voltammograms of reaction solutions obtained by reaction of $K_8[SiW_{11}O_{39}]$ and $[Ru(benzene)Cl_2]_2$ at (red line) 215 °C, (black line) 170 °C, (blue line) 150 °C and (solid line with open circles) 100 °C for 5 hours. The reaction mixture (0.1 ml) was dissolved in 0.526 M KH₂PO₄ (1.9 ml) (pH ca. 4.3). Green line is cyclic voltammogram of $[{SiW_{11}O_{39}Ru(IV/III)}_2O]^{11-}$ (**3b**) (0.45 mM) in 0.5 M KH₂PO₄ (pH 4.3). Arrows indicate peaks corresponding to redox peaks of **3b**.

Figure S3. Cyclic voltammograms of reaction solutions obtained by reaction of $K_8[GeW_{11}O_{39}]$ and $[Ru(benzene)Cl_2]_2$ at (red line) 215 °C, (black line) 170 °C and (blue line) 150 °C for 5 hours. The reaction mixture (0.1 ml) was dissolved in 0.526 M KH₂PO₄ (1.9 ml) (pH ca. 4.3). Green line is cyclic voltammogram of $[{GeW_{11}O_{39}Ru(IV/III)}_2O]^{11-}$ (**3c**) (0.45 mM) in 0.5 M KH₂PO₄ (pH 4.3). Arrows indicate peaks corresponding to redox peaks of **3c**.

Figure S4. pH dependence on redox potentials $E_{1/2}$ (Pourbaix diagram) for (black) **1a**, (red) **1b** and (blue) **1c**. Squares, triangles and circles indicate redox potentials of Ru(V/IV), Ru(IV/III) and Ru(III/II), respectively.

Figure S5. (a) ³¹P-NMR and (c) ¹H-NMR of yellow solid obtained by a reaction of $[PW_{11}O_{39}]^{7-}$ and $[Ru(benzene)Cl_2]_2$ at 100 °C for 5 hours. The solid was isolated by adding CsCl. (b) ³¹P-NMR and (d) ¹H-NMR of $[PW_{11}O_{39}{Ru(benzene)(H_2O)}]^{5-}$ (**2a**) prepared at room temperature (Proust's group method, V. Artero, V. Lahootun, R. Villanneau, R. Thouvenot, P. Herson, P. Gouzerh and A. Proust, *Inorg. Chem.*, 2005, **44**, 2826-2835.). ¹H-NMR of (e) $[SiW_{11}O_{39}{Ru(benzene)(H_2O)}]^{6-}$ (**2b**) and (f) $[GeW_{11}O_{39}{Ru(benzene)(H_2O)}]^{6-}$ (**2c**) prepared at room temperature. ¹³C-NMR of (g) **2a**, (h) **2b** and (i) **2c** prepared at room temperature.

Figure S6. UV-Vis spectra of reaction solution obtained by reaction of (blue) $K_8[SiW_{11}O_{39}]$ or (black) $K_8[GeW_{11}O_{39}]$ with $[Ru(benzene)Cl_2]_2$ at 215 °C for 5 hours. The reaction mixture (0.1 ml) was dissolved in 0.526 M KH₂PO₄ (1.9 ml) (pH ca. 4.3). Concentration of Ru is ca. 0.85 mM. Red line is UV-Vis spectrum of $[{SiW_{11}O_{39}Ru(IV/III)}_2O]^{11-}$ (**3b**) (0.18 mM) in 0.5 M KH₂PO₄.

Figure S7. IR spectra of Ru-substituted heteropolytungstates produced by reactions of (black) $[PW_{11}O_{39}]^{7-}$, (red) $[SiW_{11}O_{39}]^{8-}$ or (blue) $[GeW_{11}O_{39}]^{8-}$ with (a) $[Ru(benzene)Cl_2]_2$ or (b) $Ru(acac)_3$ as a Ru source. Reaction temperature was 170 °C and reaction time was 5 hours or 20 hours for reactions with $[Ru(benzene)Cl_2]_2$ or $Ru(acac)_3$, respectively. The solid was isolated by adding CsCl. Arrows in (b) indicate peaks corresponding to CO of $[PW_{11}O_{39}Ru(II)(CO)]^{5-}$, $[SiW_{11}O_{39}Ru(II)(CO)]^{6-}$ or $[GeW_{11}O_{39}Ru(II)(CO)]^{6-}$.

Figure S8. Cyclic voltammograms of the complex **2b** after calcination at (blue) 100 °C, (green) 200 °C, (pink) 400 °C, (red) 450 °C, (purple) 500 °C and (black) 600 °C. The sample was heated with a ramp of 5 °C/min. CV was measured in 0.5 M KH₂PO₄ (pH 4.3).

Figure S9. IR of the complex **2b** after calcination at (blue) 100 °C, (green) 200 °C, (pink) 400 °C, (red) 450 °C, (purple) 500 °C and (black) 600 °C. The sample was heated with a ramp of 5 °C/min. The black arrow indicates the peak corresponding to benzene and the white arrow indicates the peak corresponding to Ru(II).

Figure S10. Cyclic voltammograms of sample obtained (black) after calcination of **2b** at 450 °C and (red) after recrystallization of the calcined **2b** (450 °C) from water.

Figure S11. TG-DTA profile of **2a**.

Figure S12. Cyclic voltammograms of the complex **2a** after calcination at (green) 200 °C, (brown) 300 °C, (pink) 400 °C and (purple) 500 °C. The sample was heated with a ramp of 5 °C/min. CV was measured in 0.5 M KH₂PO₄ (pH 4.3).

Figure S13. IR of the complex **2a** after calcination at (green) 200 °C, (brown) 300 °C, (pink) 400 °C and (purple) 500 °C. The sample was heated with a ramp of 5 °C/min. The black arrow indicates the peak corresponding to benzene and the white arrow indicates the peak corresponding to Ru(II).

Figure S14. TG-DTA profile of **2c**.

Figure S15. Cyclic voltammograms of the complex **2c** after calcination at (green) 200 °C, (pink) 400 °C, (red) 450 °C and (purple) 500 °C. The sample was heated with a ramp of 5 °C/min. CV was measured in 0.5 M KH_2PO_4 (pH 4.3).

Figure S16. IR of the complex **2c** after calcination at (green) 200 °C, (pink) 400 °C, (red) 450 °C and (purple) 500 °C. The sample was heated with a ramp of 5 °C/min. The black arrow indicates the peak corresponding to benzene and the white arrow indicates the peak corresponding to Ru(II).