Syntheses, characterizations and properties of $[Mo_2O_2S_2]$ -based oxothiomolybdenum wheels incorporating bisphosphonate ligands.

Hani El Moll,^a Justin Claude Kemmegne-Mbouguen,^{a,b} Mohamed Haouas,^{*a} Francis Taulelle,^a Jérôme Marrot,^a Emmanuel Cadot, Pierre Mialane, Sébastien Floquet,^{*a} and Anne Dolbecq^{*a}

- a) Institut Lavoisier de Versailles, UMR 8180, Université de Versailles Saint-Quentin en Yvelines, 45 avenue des Etats-Unis, 78035 Versailles, France. E-mails: <u>dolbecq@chimie.uvsq.fr</u>, <u>sebastien.floquet@chimie.uvsq.fr</u>, <u>haouas@chimie.uvsq.fr</u>.
- b) Laboratoire de Chimie Analytique, Faculté des Sciences,Université de Yaoundé I, B.P. 812, Yaoundé, Cameroon

Supporting Information

Table SI1. Comparison of selected bond distances in

 Mo_8S_8 (Ale) 4, Mo_8S_8 (Zol) 4 and Mo_8O_8 (Ale) 4.

Mo_8S_8 (Ale) $_4$	S_8 (Ale) 4 Mo_8S_8 (Zol) 4		Mo_8O_8 (Ale) 4			
Mo(1)-O(1) 1.6906(11)	Mo(1)-O(1)	1.677(3)	Mo(1)-O(1)	1.681(4)	Mo(5)-O(25)	1.704(4)
Mo(1)-O(2) 2.0698(11)	Mo(1)-O(2)	2.130(4)	Mo(1)-O(2)	1.932(4)	Mo(5)-O(9)	1.944(4)
Mo(1)-O(3) 2.1058(11)	Mo(1)-O(3)	2.200(3)	Mo(1)-O(3)	1.946(4)	Mo(5)-O(8)	1.948(4)
Mo(1)-S(1) 2.3219(4)	Mo(1)-O(4)	2.204(3)	Mo(1)-O(4)	2.074(4)	Mo(5)-O(26)	2.057(4)
Mo(1)-S(2) 2.3226(4)	Mo(1)-S(2)	2.3263(14)	Mo(1)-O(5)	2.079(4)	Mo(5)-O(27)	2.110(4)
Mo(1)-O(4) 2.3924(10)	Mo(1)-S(1)	2.3295(15)	Mo(1)-O(6)	2.408(4)	Mo(5)-O(28)	2.287(4)
Mo(1)-Mo(2)2.8387(2)	Mo(1)-Mo(1)	2.8525(8)	Mo(1)-Mo(6)	2.5834(7)		
					Mo(6)-O(29)	1.705(5)
Mo(2)-O(5) 1.6832(11)	Mo(2)-O(5)	1.679(4)	Mo(2)-O(7)	1.681(4)	Mo(6)-O(2)	1.934(4)
Mo(2)-O(6) 2.1032(10)	Mo(2)-O(7)	2.109(3)	Mo(2)-O(8)	1.938(4)	Mo(6)-O(3)	1.941(4)
Mo(2)-O(7) 2.1074(10)	Mo(2)-O(6)	2.111(4)	Mo(2)-O(9)	1.942(4)	Mo(6)-O(30)	2.045(4)
Mo(2)-S(1) 2.3243(4)	Mo(2)-S(3)	2.3078(17)	Mo(2)-O(10)	2.072(4)	Mo(6)-O(31)	2.116(4)
Mo(2)-S(2) 2.3261(4)	Mo(2)-S(4)	2.3275(16)	Mo(2)-O(11)	2.092(4)	Mo(6)-O(32)	2.311(4)
Mo(2)-O(8) 2.3965(11)	Mo(2)-O(8)	2.402(3)	Mo(2)-O(12)	2.416(4)		
	Mo(2)-Mo(2)	2.8583(8)	Mo(2)-Mo(5)	2.5968(7)	Mo(7)-O(33)	1.695(4)
					Mo(7)-O(20)	1.929(4)
			Mo(3)-O(13)	1.703(4)	Mo(7)-O(21)	1.949(4)
			Mo(3)-O(15)	1.951(4)	Mo(7)-O(34)	2.100(4)
			Mo(3)-O(14)	1.952(4)	Mo(7)-O(35)	2.111(4)
			Mo(3)-O(16)	2.036(4)	Mo(7)-O(36)	2.358(4)
			Mo(3)-O(17)	2.129(4)		
			Mo(3)-O(18)	2.310(4)	Mo(8)-O(37)	1.692(4)
			Mo(3)-Mo(8)	2.5921(7)	Mo(8)-O(14)	1.942(4)
					Mo(8)-O(15)	1.950(4)
			Mo(4)-O(19)	1.702(4)	Mo(8)-O(38)	2.071(4)
			Mo(4)-O(20)	1.937(4)	Mo(8)-O(39)	2.076(4)
			Mo(4)-O(21)	1.951(4)	Mo(8)-O(40)	2.413(4)
			Mo(4)-O(23)	2.056(4)		
			Mo(4)-O(22)	2.090(4)		
			Mo(4)-O(24)	2.357(4)		
			Mo(4)-Mo(7)	2.5758(7)		

Figure SI1: View along the *c* axis of the 3D structure of (a) $Rb_8Mo_8S_8(Zol)_4.32H_2O$ and (b) $Rb_{4.75}K_{3.25}Mo_8S_8(Ale)_4.25H_2O$; brown spheres = Rb, blue spheres = K, red spheres = O, green spheres = N, black spheres = C, yellow octahedra = MoO_2S_2 , green tetrahedra = PCO_3 .

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is $\ensuremath{\mathbb{O}}$ The Royal Society of Chemistry 2012

 Mo_8S_8 (Zol) 4

 Mo_8S_8 (Ale) 4

Figure SI2: View of (a) a $\{Mo^{V}_{2}S_{2}O_{2}\}^{2+}$ dimer with BP ligands connected symmetrically in $Mo_{8}S_{8}(Zol)_{4}$ and (b) the two kinds of Mo^{V} dimers with BP ligands connected dissymmetrically in $Mo_{8}S_{8}(Ale)_{4}$; red spheres = O, blue spheres = Mo, green spheres = P, black spheres = C, yellow octahedra = $MoO_{2}S_{2}$, green tetrahedra = PCO_{3} .

Figure SI3: Experimental ¹H MAS NMR spectrum (black line) and simulated spectrum (blue line) with the decomposition (red lines) and difference spectrum (green line) of Mo_8S_8 (Ale)₄.

Figure SI4: Experimental ¹H MAS NMR spectrum (black line) and simulated spectrum (blue line) with the decomposition (red lines) and difference spectrum (green line) of Mo_8O_8 (Ale)₄.

Figure SI5: Experimental ¹³C{¹H} CPMAS (top) and MAS (bottom black line) NMR spectra and simulated spectrum (blue line) with the decomposition (red lines) and difference spectrum (green line) of Mo_8S_8 (Ale)₄ acquired under heteronuclear TPPM decoupling. Asterisks denote the signals of adamantane due to sample contamination in the NMR rotor.

Figure SI6: Experimental ¹³C{¹H} CPMAS (top) and MAS (bottom, black line) NMR spectra and simulated spectrum (blue line) with the decomposition (red lines) and difference spectrum (green line) of Mo_8O_8 (Ale)₄ acquired under heteronuclear TPPM decoupling.

Figure SI7: Experimental 87 Rb MAS NMR spectrum (blue line) and simulated spectrum (red line) of $Mo_8S_8(Ale)_4$.

Figure SI8: ⁷Li MAS NMR spectra of $Mo_8O_8(Ale)_4$ acquired (top) without CP and heteronuclear decoupling, (medium) without CP but under heteronuclear TPPM decoupling, and (bottom) with CP and heteronuclear TPPM decoupling.

Figure SI9: Cyclic voltammograms of $Mo_8S_8(Ale)_4$ deposited onto a glassy carbon electrode (b) compared to the bare glassy carbon electrode (a) in $CH_3CN + 0.1$ M tetrahexylammonium perchlorate as electrolyte in the presence of trifluoroacetic acid 53 µM. Scan rate 0.1 V s⁻¹; potentials are given vs AgCl/Ag electrode.