Asymmetric Hydrogenation of Imines with Recyclable Chiral Frustrated Lewis Pair Catalyst

Ghazi Ghattas^a, Dianjun Chen^a, Fangfang Pan^b and Jürgen Klankermayer^{*a}

Supplementary information

General

All reactions involving air or moisture-sensitive compounds were carried out under argon using standard Schlenk techniques or a glove box. Solvents for extraction and chromatography were technical grade and distilled prior to use. Solvents used in reactions were dried and distilled prior to use. Unless otherwise noted, all materials were obtained from commercial suppliers and were used without further purification. NMR experiments were performed on a Bruker AV300, AV400 or AV600 spectrometer. ¹H, ¹³C NMR spectra are referenced to SiMe₄ or the residual solvent peak. ³¹P, ¹¹B, ¹⁹F NMR spectra were referenced externally to 85 % H₃PO₄ at 0 ppm, BF₃.Et₂O at 0 ppm and CF₃CO₂H at -78.5 ppm relative to CFCl₂ at 0 ppm, respectively. Chemical shifts are given in ppm and spin-spin coupling constants, J, are given in Hz. Compound 10 has been studied by single crystal X-ray diffraction. Crystal data, parameters of collection and convergence results are listed in (Table 1). Intensity data were collected with a Bruker Smart APEX CCD (Mo- $K\alpha$ radiation, = 0.71073 Å, multilayer optics monochromator) area detector on a D8 goniometer in the ω scan mode. A temperature of 100(2) K was maintained for all data collections with the help of an Oxford Cryosystems Cryostream 800 cooler. Multi-scan absorption corrections were performed by SADABS.¹ The structures were solved by direct methods (SHELXS97) and refined by full matrix least-squares on F2 (SHELXL97).² Non-hydrogen atoms were assigned anisotropic displacement parameters, and H atoms were introduced in their idealized positions and refined using a riding model. The absolute configurations were confirmed by evaluation of the Flack parameter.³ The enantiomeric excess was determined by HPLC using a chiral stationary phase column (Column, Chiralcel OD-H and AD-H) or by GC (Chirasil-Dex CB). All imines were prepared according to a general procedure.⁴ Imines **11a-11h** and amines **12a-12h** are known compounds and their ¹H-NMR data matched the literature data. (C₆F₅)₂BH was prepared according to literature methods.⁵

Preparation of 7:⁶ A solution of 1,4-dibromobenzen (15.5 g, 65.7 mmol) in THF (10 ml), was slowly added to magnesium turnings (1.60 g, 65.7 mmol) in THF (50 ml) under an Argon atmosphere. After the initial reaction had subsided, the solution was heated for 30 min. A solution of *R*-(+)-Camphor (4.00 g, 26.3 mmol) in THF (10 ml) was added, and the reaction warmed overnight. The mixture was cooled in an ice/water bath and then quenched with saturated aqueous NH₄Cl (10 ml). The organic layer was separated and the aqueous phase was extracted with ether (3 × 30 ml). The organics were combined, dried (Na₂SO₄), and concentrated in vacuo. After removal of the solvent, the residue was purified through removal of unreacted camphor and biphenyl by Kugelrohr distillation (high vacuum, 80 °C). The residual oil was dissolved in 20 ml of pyridine, and the mixture was cooled in salt/ice bath (-10 °C). Thionyl chloride (1 ml) was slowly added by syringe, and the mixture stirred at 0 °C for 1 h. The reaction mixture was carefully diluted with water (0°C) and extracted with pentane (3 × 30 ml). The extract was washed with 10 % HCl, saturated NaHCO₃, and saturated aqueous NaCl. The combined organics were dried over Na₂SO₄. The crude product was purified by column chromatography on silica gel (eluent: pentane) to give **7** as a colorless solid in 45% yield.

¹H-NMR (400 MHz, CDCl₃): $\delta = 0.74$ (s, 3H), 0.79 (s, 3H), 0.99 (s, 3H), 1.00 (m, 1H), 1.19 (m, 1H), 1.60 (m, 1H), 1.86 (m, 1H), 2.30 (t, J = 3.8 Hz, 1H), 5.91 (d, J = 3.2 Hz, 1H), 7.25 (d, J= 8.0 Hz, 2H), 7.77 (t, J= 7.7 Hz, 2 H) ppm.

¹³C-NMR (75 MHz, CDCl₃): δ = 12.57, 19.60, 19.72, 25.61, 31.90, 51.68, 54.89, 57.18, 120.21, 128.26, 131.15, 132.46, 137.49, 148.76 ppm.

Preparation of 8: To a solution of **7** (1.5 g, 5.2 mmol) in THF (5 ml), *t*-BuLi (6.8 ml, 10.4 mmol) was slowly added at -78 °C under an Argon atmosphere. After 1 hour at -30 °C, di-*tert*-butylchlorophosphine (1.0 ml, 5.2 mmol) was added, stirred for 30 minutes at -78 °C, then warmed to room temperature, and stirred overnight. Subsequently, the THF was removed under vacuo, the residue washed with dry pentane (3×10 ml), and filtrated under Argon. Then the residual was washed with dry methanol (3×5 ml) to yield pure **5** in 60% yield as colorless powder.

¹H-NMR (400 MHz, C_6D_6): $\delta = 0.73$ (s, 3H), 0.94 (s, 3H), 0.99 (s, 3H), 1.00 (m, 1H), 1.21 (d, J= 1.8, 9H), 1.24 (d, J= 2.0, 9H), 1.32 (m, 1H), 1.59 (m, 1H), 1.87 (m, 1H), 2.27 (t, J = 3.1 Hz, 1H), 5.96 (d, J = 3.9 Hz, 1H), 7.03 (d, J= 7.8 Hz, 2H), 7.33 (d, J= 8.8 Hz, 2 H) ppm.

¹³C-NMR (75 MHz, Toluene-D₈): δ = 12.74, 19.75, 19.82, 25.98, 30.58, 30.73, 31.95, 32.18, 32.21, 52.10, 55.10, 57.24, 125.96, 126.05 (d, J_{P-C} = 8.5 Hz), 132.36, 135.51, 135.75, 136.7 139.44, 150.02 ppm.

³¹P-NMR (400 MHz, C_6D_6): $\delta = 37.9$ ppm.

Preparation of 10: In a 100 ml Schlenk tube with a magnetic stirring bar, $(C_6F_5)_2BH$ (242.6 mg, 0.70 mmol) and **8** (0.70 mmol) were dissolved in pentane (5 ml) and stirred at 100°C to yield **9**, which was used without purification. The solution of **9** in pentane was degassed three times with freeze-pump-thaw cycles and refilled with H₂ (1 bar) at liquid nitrogen temperature. The reaction was allowed to stir at room temperature for 48 hours. The product precipitated during this time as a colorless solid. The supernatant was decanted and the residue was washed with pentane, then purified via column chromatography using silica and dichloromethane as eluent to yield pure **10** (40 % yield). Crystals suitable for X-ray diffraction were grown from a dichloromethane/pentane solution.

¹H-NMR (600 MHz, CD₂Cl₂): $\delta = 0.62$ (s, 3H), 0.91 (s, 3H), 1.13, (m, 1H), 1.38 (s, 3H), 1.41 (m, 1H), 1.49 (d, J = 1.6 Hz, 9H), 1.51 (d, J= 1.6 Hz, 9H), 1.59 (m, 1H), 1.68 (s, 1H), 1.89 (t, J= 8.7 Hz, 1H), 1.96 (m, 1H), 2.85 (br, BH), 3.0 (d, J= 9.1 Hz, 1H), 5.71 (d, J_{P-H} = 477 Hz, PH), 7.38 (m, 2H), 7.49 (m, 2H) ppm.

¹³C-NMR (150 MHz, CD₂Cl₂): δ = 14.57, 20.67, 21.99, 27.48, 28.75, 33.10, 34.50, 34.75, 50.29, 50.59, 51.43, 59.47, 107.45(d, J_{P-C} = 75.8 Hz), 132.06, 157.22 ppm. The carbon bonded to B atom and quaternary carbon of C₆F₅ ring was not observed;

³¹P{¹H}-NMR (242 MHz, CD_2Cl_2): $\delta = 53.7$;

¹⁹F{¹H}-NMR (376 MHz, CD₂Cl₂): δ = -132.36 (d, J_{F-F} = 21.9 Hz, 2F), -132.83 (dm, J_{F-F} = 19.3 Hz, 2F), -165.73 (t, J_{F-F} = 23.4 Hz, 1F), -165.93 (t, J_{F-F} = 20.8 Hz, 1F), -167.61 (m, 2F), -167.82 (m, 2F) ppm.

¹¹B-NMR (96 MHz, CD₂Cl₂): $\delta = -19.3$ (d, J_{B-H} = 81.6 Hz)

Fig. 1 Molecular structure of compound 10in the crystal. Hydrogen atoms and solvent molecules were omitted for clarity except

for the hydrogen atoms bonded to boron and phosphorus.

Table 1 Crystallographic Data

Compound reference	10
Chemical formula	$C_{30}H_{40}BF_{10}P$
Formula Mass	704.28
Crystal system	Monoclinic
<i>a</i> /Å	15.070(4)
<i>b</i> /Å	13.208(4)
c/Å	17.862(5)
$\alpha /^{\circ}$	90.00
$\beta^{\prime \circ}$	97.089(8)
$\gamma/^{\circ}$	90.00
$V/Å^3$	3528.1(18)
Temperature/K	100(2)
Space group	<i>P</i> 2(1)
Z	2
Radiation type	ΜοΚα
Absorption coefficient, μ/mm^{-1}	0.233
No. of reflections measured	31922
No. of independent reflections	14422
R _{int}	0.0935
Final R_I values $(I > 2\sigma(I))$	0.0699
Final $wR(F^2)$ values $(I > 2\sigma(I))$	0.1485
Final R_1 values (all data)	0.1082
Final $wR(F^2)$ values (all data)	0.1736
Goodness of fit on F^2	1.000
Flack parameter	-0.01(9)
CCDC number	

General procedure for the preparation of imines 11a-11h

Method A^{4a}: To a solution of ketone (20 mmol) and aniline (24 mmol) in dry toluene (40 ml) 4 Å molecular sieves (20 ml) were added. After being heated to reflux overnight, the reaction mixture was filtered. Solvent was evaporated and the crude product was purified by Kugelrohr distillation, and subsequent crystallization in dry methanol.

Method B^{4b} : To a solution of ketone (20 mmol), aniline (24 mmol), and triethylamine in dichloromethane (50 ml), TiCl₄ (10 mmol) in dichloromethane (15 ml) was added at 0°C. The reaction mixture was stirred for 30 minutes at 0°C and overnight at room temperature. The resulting suspension was quenched with saturated aqueous K₂CO₃ solution (60 ml), and then filtered through a Büchner-funnel. The water layer was extracted with ether (3 × 30 ml), and the combined organic layers were washed with brine. The solvent was evaporated, and the imine was recrystallized from ethanol.

N-(1-Phenylethylidene)aniline 11a: Prepared according to method A from acetophenone and aniline, pale yellow solid.

¹H-NMR (300 MHz, CDCl₃): δ = 2.25 (s, 3H), 6.82 (d, J = 7.3 Hz, 2H), 7.11 (t, J = 7.4 Hz, 1H), 7.36 (t, J = 7.7 Hz, 2H), 7.42-7.54 (m, 3H), 8.00 (m, 2H) ppm.

¹³C-NMR (75 MHz, CDCl₃): $\delta = 14.7$, 119.4, 123.3, 127.2, 128.4, 129.0, 130.5, 139.5, 151.7 ppm.

N-(1-(2-(Naphthyl)ethylidene)aniline 11b: Prepared according to method B from 2-acetonaphthone and aniline, yellow solid.

¹H-NMR (300 MHz, CDCl₃): $\delta = 2.40$ (s, 3H), 6.86 (d, J = 7.6 Hz, 2H), 7.11 (t, J = 7.4 Hz, 1H), 7.39 (t, J = 7.8 Hz, 2H), 7.54 (m, 2H), 7.91 (m, 3H), 8.24 (d, J = 8.8 Hz, 1H), 8.36 (s, 1H) ppm.

¹³C-NMR (75 MHz, CDCl₃): δ =17.4, 119.5, 123.4, 124.3, 126.4, 127.2, 127.6, 127.7, 128.1, 129.0, 129.1, 132.9, 134.5, 136.8 ppm.

N-Phenyl-(1-(4-chlorophenyl)ethylidene)aniline 11c: Prepared according to method B from 4-chlorobenzaldehyde and aniline, yellow solid.

¹H-NMR (300 MHz, CDCl₃): δ = 2.21 (s, 3H), 6.83 (d, J = 8.4 Hz, 2H), 7.14 (t, J = 7.5 Hz, 1H), 7.33–7.41 (m, 4H), 7.94 (d, J = 8.4 Hz, 2H) ppm.

¹³C-NMR (75 MHz, CDCl₃): δ = 17.6, 119.3, 123.6, 128.5, 129.2, 136.7, 138.1, 151.6, 164.4 ppm.

N-(1-phenylethylidene)-4-methoxyaniline 11d: Prepared according to method B from acetophenone and 4-methoxyaniline, yellow solid.

¹H-NMR (300 MHz, CDCl₃): δ = 2.26 (s, 3H), 3.82 (s, 3H), 6.76 (d, J = 8.7 Hz, 2H), 6.92 (t, J = 8.7 Hz, 2H), 7.10 (m, 2H), 7.45 (m, 3H), 7.97 (m, 2H) ppm. ¹³C-NMR (75 MHz, CDCl₃): δ = 17.4, 55.5, 114.3, 120.8, 127.1, 128.4, 130.4, 139.7, 144.8, 156.0, 165.8 ppm.

N-(1-(2-(Naphthyl)ethylidene)-4-methoxyaniline 11e: Prepared according to method B from 2-acetonaphthone and 4-methoxyaniline, yellow solid.

¹H-NMR (300 MHz, CDCl₃): $\delta = 2.39$ (s, 3H), 3.84 (s, 3H), 6.83 (d, J = 9.1 Hz, 2H), 6.95 (d, J = 9.1 Hz, 2H), 7.54 (m, 2H), 7.85-8.00 (m, 3H), 8.24 (d, J = 8.7 Hz, 1H), 8.34 (s, 1H) ppm. ¹³C-NMR (75 MHz, CDCl₃): $\delta = 17.3$, 55.5, 114.3, 120.8, 124.3, 126.3, 127.1, 127.6, 127.8, 128.0, 128.9, 133.0, 134.4, 137.2, 144.9, 156.1, 165.5 ppm. **N-[1-(4-chlorophenyl)ehylidene]-p-anisidine 11f:** Prepared according to method A from 4-methoxyacetophenone and 4-chloroaniline, yellow solid.

¹H-NMR (300 MHz, CDCl₃): δ = 2.13 (s, 3H), 3.71 (s, 3H), 6.62 (d, J = 8.8 Hz, 2H), 6.81 (d, J = 8.4 Hz, 1H), 7.27 (d, J = 8.4 Hz, 1H), 7.79 (d, J = 9.2 Hz, 2H) ppm. ¹³C-NMR (75 MHz, CDCl₃): δ = 17.16, 55.47, 114.04, 120.79, 128.51, 129.28, 136.43, 138.18, 144.47, 156.12, 164.6 ppm.

N-[1-(4-Methoxy)phenyl]ethylidene-4-methoxyaniline 11g: Prepared according to method A from 4-methoxyacetophenone and 4-methoxyaniline, yellow solid.

¹H-NMR (300 MHz, CDCl₃): $\delta = 2.24$ (s, 3 H), 3.82 (s, 3 H), 3.86 (s, 3 H), 6.74 (m, 2 H), 6.95 (m, 2 H), 6.94 (m, 2 H), 7.94 (m, 2 H) ppm.

¹³C-NMR (75 MHz, CDCl₃): $\delta = 17.2$, 55.4, 55.5, 113.5, 114.1, 120.8, 128.6, 132.3, 144.8, 156.12, 164.38 ppm.

N-(1-(4-Methoxyphenyl)ethylidene)aniline 11h: Prepared according to method B from 4methoxyacetophenone and aniline, pale yellow solid.

¹H-NMR (300 MHz, CDCl₃): δ = 2.21 (s, 3H), 3.87 (s, 3H), 6.80 (d, J = 7.9 Hz, 2H), 7.10 (d, J = 8.8 Hz, 1H), 7.08 (t, J = 7.3 Hz, 1H), 7.42 (t, J = 7.9 Hz, 2H), 7.96 (d, J = 8.8 Hz, 2H) ppm. ¹³C-NMR (75 MHz, CDCl₃): δ = 17.2, 55.4, 113.6, 119.7, 123.1, 128.8, 128.9, 132.2, 151.9, 161.6, 164.6 ppm.

General procedure for the catalytic hydrogenation of imines 12a-12h

Under an argon atmosphere, imine (0.5 mmol), catalyst **10** (2.0 mol %), and 1 ml toluene were transferred to a stainless steel autoclave. The autoclave was purged three times with hydrogen and finally pressurized to 25 bar. The reaction mixture was stirred at 65°C for the indicated period of time, and then the hydrogen gas was released. Entry 9, 0.5 mol% catalyst was mixed with (2.0 mmol) imine **11h**. The conversion of the substrate was determined by ¹H NMR spectroscopy of the crude reaction mixture, and the product was purified by chromatography with pentane/ethyl acetate (10/1). The enantiomeric excess was determined by HPLC using a chiral stationary phase column (Column, Chiralcel OD-H, and AD-H) or by GC (Chirasil-Dex CB).

Procedure for catalyst recycling experiments

Under an argon atmosphere catalyst **10** (2.5 mol %), imine **11g** (1.42 mmol), and 1 ml toluene were transferred to a stainless steel autoclave. The autoclave was purged three times with hydrogen and finally pressurized to 25bar. The reaction mixture was stirred at 65°C for 24 hours, and then the hydrogen gas was released. Afterwards, 5 ml of pentane were added, the colorless precipitate separated from the supernatant solution, and retransferred to the autoclave for subsequent hydrogenation experiment.

N-(1-phenylethyl)amine 12a (R):⁸ Conversion: 70%, determined by ¹H-NMR.

¹H-NMR (300 MHz, CDCl₃): $\delta = 1.52$ (d, J = 6.7 Hz, 3H), 3.43 (brs, 1H), 4.48 (q, J = 6.7 Hz, 1H), 6.52 (m, 2H), 6.65 (m, 1H), 7.04-7.14 (m, 2H), 7.18-7.40 (m, 5H); isolated yield: 63%. The enantiomers were analyzed by GC using a Chirasil-Dex CB, 25 m × 0.25mm, H₂ 2.0 ml/min, 100°C for 5min, 5°C/min to 160°C, 160°C for 15 min, FID temperature 250°C; Major enantiomer: t_r = 19.46 min, minor enantiomer: t_r = 19.32 min; 72% ee (*R*).

N-(1-(2-Naphthyl)ethyl)amine 12b (-):⁹ Conversion: 51%, determined by ¹H-NMR.

¹H-NMR (300 MHz, CDCl₃): $\delta = 1.62$ (d, J = 6.5 Hz, 3H), 4.23 (brs, 1H), 4.67 (q, J = 6.5 Hz, 1H), 6.5-6.63 (m, 2H), 6.67 (t, J = 7.3 Hz), 7.11 (t, J = 7.9 Hz, 2H), 7.40-7.58 (m, 3H), 7.72-7.92 (m, 4H);); isolated yield: 32%.

The enantiomers were analyzed by HPLC using a Chiralcel AD-H (n-heptane/2-propanol = 98/2, flow rate=0.5 ml/min, wavelength=240 nm); major enantiomer: $t_r = 15.92$ min, minor enantiomer: $t_r = 14.20$ min; 76 % ee (-)

N-Phenyl-1-(4-chlorophenyl)ethylamine 12c (-):¹⁰ Conversion: 33%, determined by ¹H-NMR.

¹H-NMR (300 MHz, CDCl₃) δ = 1.52 (d, J = 6.9 Hz, 3H) 4.13 (bs, 1H), 4.48 (dd, J = 6.6 and 13.2 Hz, 1H), 6.51 (d, J = 7.8 Hz, 2H), 6.67 (t, J = 7.2 Hz, 1H), 7.07–7.12 (m, 2H), 7.24–7.35 (m, 4H). The enantiomers were analyzed by HPLC using a Chiralcel OD-H (heptanes/iPrOH: 98/2, flow rat=0.5 mL/min, wavelength=240 nm); major enantiomer: t_r = 27.56 min. minor enantiomer t_r = 24.58 min 72 % ee (–)

N-(1-phenylethyl)-4-methoxyamine 12d (R):⁹ Conversion: >99%, determined by ¹H-NMR.

¹H-NMR (300 MHz, CDCl₃): $\delta = 1.50$ (d, J = 6.8 Hz, 3H), 3.69 (s, 3H), 3.78 (brs, 1H), 4.41 (q, J = 6.8 Hz, 1H), 6.47 (m, 2H), 6.69 (m, 2H), 7.17-7.42 (m, 5H); isolated yield: 95%. The enantiomers were analyzed by HPLC using a Chiracel OD-H (n-heptane/2-propanol = 99/1, flow rate=0.5ml/min, wavelength=240 nm); major enantiomer: t_r = 34.73 min, minor enantiomer: t_r = 30.59 min; 73 % ee (*R*).

N-(1-(2-Naphthyl)ethyl)-4-methoxyamine 12e (+):¹¹ Conversion: >99%, determined by ¹H-NMR.

¹H-NMR (300 MHz, CDCl₃): $\delta = 1.48$ (d, J = 6.7 Hz, 3H), 3.58 (s, 3H), 3.79 (brs, 1H), 4.48 (q, J = 6.7 Hz, 1H), 6.36-6.64 (m, 4H), 7.26-7.46 (m, 3H), 7.64-7.78 (m, 4H); isolated yield: 94%. The enantiomers were analyzed by HPLC using a Chiralcel OD-H (n-heptane/2-propanol = 98/2, flow rate=0.5ml/min, wavelength=240 nm); major enantiomer: t_r = 31.51 min, minor enantiomer: t_r = 38.77 min; 76% ee (+).

N-(4-Methoxyphenyl)-N-(1-(4-chlorophenyl)ethyl)amine 12f (+):⁷ Conversion: 70%, determined by ¹H-NMR.

¹H-NMR (300 MHz, CDCl₃): $\delta = 1.36$ (d, J = 6.75 Hz, 3H), 3.59 (s, 3H), 4.07 (brs, 1H), 4.32 (q, J = 6.8 Hz, 1H), 6.32 (d, J = 9.1 Hz, 2H), 6.66 (d, J = 9.6 Hz, 2H), 7.12 (m, 4H); isolated yield 51%. The enantiomers were analyzed by HPLC using a Chiralcel OD-H (heptanes/iPrOH: 95/5, flow rate=0.5 mL/min, wavelength=250 nm); major enantiomer: $t_r = 21.99$ min, minor enantiomer $t_r = 27.05$ min; 72% ee (+).

4-methoxy-N-(1-(4-methoxyphenyl)ethyl)amine 12g (+):¹² Conversion: >99%, determined by ¹H-NMR.

¹H-NMR (300 MHz, CDCl₃): $\delta = 1.39$ (d, J= 5.10, 3 H), 3.73 (s, 3 H), 3.81 (s, 3 H), 3.82 (brs, 1H), 4.42 (q, J = 6.7 Hz, 1H), 6.53 (d, J = 6.8 Hz, 2 H), 6.75 (d, J = 6.2 Hz, 2 H), 6.90 (d, J = 7.8 Hz), 7.33 (d, J = 8.7 Hz); isolated yield 95%. The enantiomers were analyzed by HPLC using a

Chiralcel OD-H (heptanes/iPrOH: 97/3, flow rate=0.5 mL/min, wavelength=220 nm); major enantiomer: $t_r = 21.88$ min, minor enantiomer $t_r = 25.23$ min; 76 % ee (+).

N-(1-(4-methoxyphenyl)ethyl)amine 12h (-):¹⁰ Conversion: >99%, determined by ¹H-NMR.

¹H-NMR (300 MHz, CDCl₃): $\delta = 1.51$ (d, J = 6.7 Hz, 3H), 3.80 (s, 3H), 4.07 (brs, 1H), 4.46 (q, J = 6.7 Hz, 1H), 6.54 (d, J = 7.6 Hz, 2H), 6.66 (t, J = 6.7 Hz, 1H), 6.87 (m, 2H), 7.11 (m, 2H), 7.30 (m, 2H); isolated yield: 95 %.

The enantiomers were analyzed by HPLC using a Chiracel OD-H (n-heptane/2-propanol = 99/1, flow rate=0.5ml/min, wavelength=240 nm); major enantiomer: $t_r = 22.87$ min, minor enantiomer: $t_r = 20.56$ min; 70 % ee (–).

References

- 1. G. M. Sheldrick, SADABS, Program for Empirical Absorption Correction of Area Detector Data, University of Göttingen, 1996
- 2. G. M. Sheldrick, Acta Crystallogr., Sect. A: Found. Crystallogr. 2008, 64, 112-122..
- 3. H. D. Flack, Acta Crystallogr., Sect. A: Found. Crystallogr. 1983, **39**, 876-881
- a) P. Schnider, G. Koch, R. Prétôt, G. Wang, F. M. Bohnen, C. Krüger and A. Pfaltz, *Chem. Eur. J.*, 1997, 3, 887-892; b) M. Periasamy, G. Srinivas and P. Bharathi, *J. Org. Chem.*, 1999, 64, 4204-4205.
- 5. a) D. J. Parks, R. E. von H. Spence and W. E. Piers, *Angew. Chem., Int. Ed.*, 1995, **34**, 809-811; b) D. J. Parks, W. E. Piers and G. P. A. Yap, *Organometallics*, 1998, **17**, 5492-5503.
- 6. J. Coxon, M. Hartshorn and A. Lewis, *Aust. J. Chem.*, 1971, **24**, 1017-1026.
- 7. A. Trifonova, J. S. Diesen, C. J. Chapman and P. G. Andersson, *Org. Lett.*, 2004, **6**, 3825-3827.
- 8. N. a. Mršić, A. J. Minnaard, B. L. Feringa and J. G. d. Vries, *J. Am. Chem. Soc.*, 2009, **131**, 8358-8359.
- 9. M. Rueping, E. Sugiono, C. Azap, T. Theissmann and M. Bolte, *Org. Lett.*, 2005, **7**, 3781-3783.
- 10. S.-F. Zhu, J.-B. Xie, Y.-Z. Zhang, S. Li and Q.-L. Zhou, *J. Am. Chem. Soc.*, 2006, **128**, 12886-12891.
- 11. S. Hoffmann, A. M. Seayad and B. List, *Angew. Chem., Int. Ed.*, 2005, **44**, 7424-7427.
- 12. C. Moessner and C. Bolm, *Angew. Chem., Int. Ed.*, 2005, **44**, 7564-7567.

120	110	100	90	80	70	60	یمالی۔ 50	40	30	20	10	GB PC •••••••••••••••••••••••••••••••••••	0 1.00
												SI SF WDW SSB LB	00000 MHz 242.9107640 MHz EM 0 5.00 Hz
												PL12W PL13W SFO2	0.21664955 W 0.11554678 W 600.0686604 MHz
												PL2 PL12 PL13 PL2W	-1.00 dB 17.27 dB 20.00 dB 14.54647732 W
												====== CPDPRG2 NUC2 PCPD2	= CHANNEL f2 ======= waltz16 1H 100.00 usec
												P1 PL1 PL1W SFO1	20.00 usec -2.00 dB 98.33247375 W 242.9337650 MHz
												'TDU ======= NUC1	1 = CHANNEL f1 ======= 31P
												TE D1 D11	298.4 K 2.00000000 sec 0.03000000 sec
												AQ RG DW DE	0.2245176 sec 23170.5 6.850 usec
	(<i>t-</i> Bu) ₂ F	⊕ >–Н										NS DS SWH FIDRES	128 2 72992.703 Hz 2.227561 Hz
		>										PROBHD PULPROG TD SOLVENT	5 mm PABBI 1H/ zgpg30 32768 CD2C12
	H	l _⊖ (C ₆ F ₅) ₂										Date_ Time INSTRUM	20110810 10.39 spect
												NAME EXPNO PROCNO	UGG-106-600-2 2
							53.67						

