Supplementary Information

ε-Keggin -based coordination networks: synthesis, structure and application toward green synthesis of polyoxometalate@graphene hybrids

L. Marleny Rodriguez Albelo,^a Guillaume Rousseau,^b Pierre Mialane,^b Jérôme Marrot,^b Caroline Mellot-Draznieks,^c A. Rabdel Ruiz-Salvador,^a Shiwen Li,^d Rongji Liu,^e Guangjin Zhang,^e Bineta Keita,^{*,d} and Anne Dolbecq^{*,b}

Experimental section for the POM@G hybrids synthesis and characterizations

Reagents, Apparatus and procedures

The composition of the aqueous electrolyte was 1M LiCl + HCl (pH 1). The electrochemical set-up was an EG & G 273 A potentiostat driven by a PC with the M270 software. For electrochemical experiments, the source, mounting and polishing of the glassy carbon (3 mm diameter) electrodes (Le Carbone Lorraine, France) have been described previously.¹ Potentials are measured against a saturated calomel reference electrode (SCE). The counter electrode was a platinum gauze of large surface area. Pure water from a RiOs 8 unit followed by a Millipore-Q Academic purification set was used throughout. The solutions were deaerated thoroughly for at least 30 minutes with pure argon and kept under a positive pressure of this gas during the experiments. Controlled potential coulometry experiments were carried out with a large surface area carbon plate.

Synthesis of graphite oxide (GO)

GO was prepared from nature G flakes by a modified Hummers method as described everywhere.² As synthesized GO (6.25ml ,0.8mg mL⁻¹) was diluted in 250 ml water and sonicated 30 min to form a 0.1mg ml⁻¹ exfoliated GO dispersion. Ultrapure water purified with Milli-Q (MQ) plus system (Millipore Co.) with resistivity of 18.2 M Ω cm was used in all experiments. The brown GO dispersion was further purificated by centrifugation at 3000 rpm for 30 min to remove any unexfoliated GO.³ The exfoliated GO dispersion is very stable in water.

Preparation of Polyoxometalate@Graphene hybrids (POM@G)

The POM @G hybrids was prepared by adding 125.3 mg $\epsilon(isop)_2$ to 41.5 ml GO followed by stirring for at least 6 h at room temperature. The samples were then centrifuged at 16000 rpm for 10 min and washed with water 4 times. The samples were then dried in the oven at 80°C.

Preparation of the modified electrodes

The **POM@G-Nafion** electrodes were prepared as previously described.⁴ Typically, an electrode is fabricated by depositing 3 μ L of the **POM@G** suspension in water (9.5 mg mL⁻¹)

on the polished glassy carbon electrode surface, letting it dry in air, then covering with 2 μ L of 5 wt% Nafion solution and letting it dry again in air. An alternative procedure consisting of adding the Nafion solution to the **POM@G** suspension in water prior to its deposition on the electrode surface could also be used.

Experimental conditions for TEM, SEM, XPS and Raman Characterizations of POM@G nanohybrids

TEM images were obtained using a JEM-2010 transmission electron microscope at an acceleration voltage of 200 kV. SEM analysis was performed on a Hitachi model JSM 6700F field-emission scanning electron microscope (FESEM). XPS measurements were performed in ultrahigh vacuum (UHV) with Krato, AXIS-HS monochromatized Al K α cathode source, at 75–150 W, using a low-energy electron gun for charge neutralization. Raman spectra were obtained with a Renishaw Raman system model 1000 ectrometer. The 532 nm radiation from a 20 mW air-cooled argon ion laser was used as the exciting source. The laser diameter was 1 μ m, and the laser power at the sample position was 4.0 mW. The data acquisition time was 10 s.

References

¹ B. Keita and L. Nadjo, *J. Electroanal. Chem.*, 1988, **243**, 87.

² W. S. Hummers and R. E. Offeman, J. Am. Chem. Soc. 1958, 80, 1339

³ D. Li, M.B. Muller, S. Gilje, R.B. Kaner and G.G. Wallace, *Nature Nanotechnology*, 2008, **3**, 101.

⁴ B. Nohra, H. El Moll, L. M. Rodriguez Albelo, P. Mialane, J. Marrot, C. Mellot-Draznieks, M. O'Keeffe, R. Ngo Biboum, J. Lemaire, B. Keita, L. Nadjo, and A. Dolbecq, *J. Am. Chem. Soc.*, 2011, **133**, 13363.

Figure SI1. Ball and stick representation with partial atomic labeling scheme, selected bond distances (Å) and bond valence summations (BVS) of $\varepsilon(isop)_2$.

 $Σ(O6) = 1.3 \implies OH, Σ(O14) = 1.3 \implies OH, Σ(O39) = 1.3 \implies OH$

Figure SI2. Ball and stick representation with partial atomic labeling scheme, selected bond distances (Å) and bond valence summations (BVS) of **TPA**[ϵ (trim)]_{∞}.

Figure SI3. Ball and stick representation with partial atomic labeling scheme, selected bond distances (Å) and bond valence summations (BVS) of $\epsilon(bim)_4$.

	Dista	nces BVS	
Mo(1)-O(7)	1.626(10)	$\Sigma(Mo1) = 6.0$	
Mo(1)-O(5)	1.893(7)		
Mo(1)-O(9)#1	1.905(7)		
Mo(1)-O(2)	1.955(7)		
Mo(1)-O(3)#1	1.999(7)		
Mo(1)-O(1)	2.551(7)		
Mo(1)-Mo(2)	2.9869(15)	
Mo(2)-O(10)	1.679(8)	$\Sigma(Mo2) = 6.0 =>$	• disordered Mo ^V and Mo ^{VI} ions
Mo(2)-O(6)	1.841(7)		
Mo(2)-O(9)	1.922(7)		
Mo(2)-O(3)#1	1.925(7)		
Mo(2)-O(2)	1.987(7)		
Mo(2)-O(1)	2.498(7)		
Mo(3)-O(8)	1.654(9)	$\Sigma(Mo3) = 5.7$	
Mo(3)-O(4)	1.888(8)		
Mo(3)-O(4)#2	1.964(10)		
Mo(3)-O(5)	1.968(8)		
Mo(3)-O(6)#1	1.978(8)		
Mo(3)-O(3)#1	2.548(7)		
Mo(3)-Mo(3)#2	2.693(2)		

Figure SI4. Ball and stick representation with partial atomic labeling scheme, selected bond distances (Å) and bond valence summations (BVS) of ε (pazo)₄.

Figure SI5. Two views showing the connecting mode of an ε Zn POM to the four neighboring POMs in ε (isop)₂ and **Z-POMOF1**; the blue {PZn₄} tetrahedra schematize the POMs.

ε(isop)₂

Z-POMOF1

Figure SI6. Views along the *c* and *b* axis of the unit-cell of $\varepsilon(isop)_2$ showing the stacking of the 2D planes.

Figure SI7. View along the *a* axis of the unit-cell of $\varepsilon(bim)_4$.

Figure SI8. Hypothetical structure built from the connection of the ε Zn units of ε (bim)₄ in which half of the ligands have been removed.

Figure SI10. Trimers of pazo ligands in π - π interactions in $\epsilon_2(pazo)_4$.

Figure SI11. Comparison of the experimental X-ray powder patterns (in black) and of the powder pattern calculated from the structure solved from single-crystal X-ray diffraction data (in red).

Figure SI13: Raman spectra of natural G, GO before reaction and as-prepared $\varepsilon_2(pazo)_4@G$.

Figure SI14: Experimental X-Ray powder pattern of the GO precursor used in this study.

Figure SI15: Top: comparison of the experimental X-ray powder pattern (in black) of $\epsilon_2(pazo)_4@G$ and of the powder pattern calculated from the structure solved from single crystal X-ray diffraction data for $\epsilon_2(pazo)_4$ (in red). Bottom : comparison of the experimental X-ray powder pattern (in black) of $\epsilon(isop)_2@G$ and of the powder pattern calculated from the structure solved from single crystal X-ray diffraction data (in red) for $\epsilon(isop)_2$.

Figure SI16: Infrared spectra of the POMOF $\varepsilon(isop)_2$ (in purple) and of the $\varepsilon(isop)_2@G$ material (in red).

Figure SI17: Infrared spectra of the POMOF $\varepsilon_2(pazo)_4$ (in purple) and of the $\varepsilon_2(pazo)_4@G$ material (in red).

Figure SI18: TEM images of GO (a) and as-prepared $\varepsilon(isop)_2@G$ nanohybrid (b); SEM image of $\varepsilon(isop)_2@G$ nanohybrid (c); EDX analysis of $\varepsilon(isop)_2@G$ nanohybrid (d).

Figure SI19: SEM image (a) and TEM (b) image of as-prepared $\varepsilon_2(pazo)4@G$ nanohybrid.

Figure SI20: Superposition of the 1st and 5000th cyclic voltammograms recorded with $\epsilon(isop)_2@G$ in a (1M LiCl +HCl (pH 1)) medium. The scan rate was100 mV s⁻¹. The reference electrode was a saturated calomel electrode (SCE).

