Support Information

A very simple method to synthetize nano-sized manganese oxide: An efficient catalyst for water oxidation and epoxidation of olefins

Mohammad Mahdi Najafpour^{*1,2}, Fahimeh Rahimi¹, Mojtaba Amini^{*3}, Sara Nayeri¹ and Mojtaba Bagherzadeh⁴

¹ Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS),

Zanjan, 45137-66731, Iran

² Center of Climate Change and Global Warming, Institute for Advanced Studies in

Basic Sciences (IASBS), Zanjan, 45137-66731, Iran

³ Department of Chemistry, Faculty of Science, University of Maragheh, Golshahr,

P.O. Box: 55181-83111731, Maragheh, Iran

⁴ Chemistry Department, Sharif University of Technology, PO Box 11155-3516,

Tehran, Iran

Corresponding authors; Phone: (+98) 241 415 3201; E-mail:

mmnajafpour@iasbs.ac.ir (MMN); Phone: (+98) 421 2278900; E-mail:

mamini@maragheh.ac.ir (MA).

Scheme S1. Chemical equations for the studied reactions.

Fig. S1. The reactor set-up for oxygen evolution experiment in the presence of Ce(IV).

Fig. S2 XRD patterns of the obtained the nano-sized manganese oxide.

C:\OPUS_NT\MEAS\RAHIMI\M600.0

22-04-2012 11.44.38

6

(b) Fig. S3 IR spectra of sample calcined at 100 (top), and 600 $^{\circ}\mathrm{C}$ (bottom)

(a)

(b)

(f)

Fig. S4 SEM images of nano-sized manganese oxide (a-f).

(a)

(b)

(c)

(**d**)

Fig. S5 TEM images of zinc - manganese oxides prepared at 300 $^{\circ}$ C (a-d).

Fig. S6 The BET plot for prepared sample.

Fig. S7 The Adsorption / desorption isotherm plot for prepared sample.

(a)

(b)

Fig. S8 UV-vis specta of the catalyst (10.0 mg) in Ce(IV) (0.4 M). The reduction of Ce(IV) (top) and MnO_4^- formation (bottom) could be observed in the first hours.

Table S1 The rate of water oxidation by the various manganese oxides

as catalysts for water oxidation.

Compound	Oxidant	TOF ^a	References
Nano-sized manganese	Ce(IV)	0.15	This work
Octahedral Molecular	Ru(bpy) ₃ ³⁺	0.11	
Sieves	Ce(IV)	0.05	1
Octahedral Layered	$Ru(bpy)_3^{3+}$	0.028	
	Ce(IV)	0.0047	1
Amorphous Manganese	$Ru(bpy)_3^{3+}$	0.06	
Oxides	Ce(IV)	0.52	1
CaMnO ₃	Ce(IV)	0.012	2
Ca ₂ Mn ₃ O ₈	Ce(IV)	0.016	2
CaMn ₂ O ₄ .H ₂ O (Nano particles)	Ce(IV)	2.2	3
CaMn ₃ O ₆	Ce(IV)	0.046	4
$CaMn_4O_8$	Ce(IV)	0.035	4
CaMn ₂ O ₄ .4H ₂ O	Ce(IV)	0.32	5
CaMn ₂ O ₄ .H ₂ O	Ce(IV)	0.54	5
Mn ₂ O ₃	Ce(IV)	0.027	5
α-MnO ₂ nanotubes	$\operatorname{Ru}(\operatorname{bpy})_{3}^{3+}$	0.035	6
α -MnO ₂ nanowires	$\operatorname{Ru}(\operatorname{bpy})_3^{3+}$	0.059	6
β -MnO ₂ nanowires	$Ru(bpy)_3^{3+}$	0.02	6
Bulk α-MnO ₂	$\operatorname{Ru}(\operatorname{bpy})_{3}^{3+}$	0.01	6
Mn oxide nanoclusters	$\operatorname{Ru}(\operatorname{bpy})_{3}^{3+}$	0.28	7
MnO ₂ (colloid)	Ce(IV)	0.09	8
PSII	Sunlight	25000	9

^a mmol O₂/mol Mn per second. In these calculations, it is assumed that all deposited metal centers are involved in the catalysis, so lower TOF limits are calculated.

References:

1 A. Iyer, J. Del-Pilar, C. Kithongo King'ondu, E. Kissel, H. Fabian Garces, H. Huang, A. M. El-Sawy, P. K. Dutta and S. L. Suib, *J. Phys. Chem.* C, DOI: 10.1021/jp2120737.

- 2 M. M. Najafpour, S. Nayeri and B. Pashaei, Dalton Trans., doi:
- 10.1039/C2DT12189A
- 3 M. M. Najafpour, S. Nayeri and B. Pashaei, Dalton Trans., 40, 2011, 9374.
- 4 M. M. Najafpour, Dalton Trans., 2011, 40, 3793.
- 5 M. M. Najafpour, T. Ehrenberg, M. Wiechen and P. Kurz, *Angew. Chem., Int. Ed.*, 2010, **49**, 2233.
- 6 V. B. R. Boppana and F. Jiao, Chem. Commun., 2011, 47, 8973.
- 7 Y. Okuno, O. Yonemitsu and Y. Chiba, Chem. Lett., 1983, 815.
- 8 M. M. Najafpour, Dalton Trans., 2011, 40, 3805.
- 9 C. Tommos and G. T. Babcock, *Biochim. Biophys. Acta, Gen. Subj.*, 2000, **1458**, 199.