Supporting information for

Electrochemical Probing of the Photoreduction of Molybdenum and Tungsten Dawson-type Polyoxometalates in Molecular and Ionic Liquid Media Using Water as an Electron Donor

Gianluca Bernardini,^a Anthony G. Wedd,^b Chuan Zhao^c and Alan M. Bond^{a,,d,}*

 ^a School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
^b School of Chemistry and the Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Victoria 3010, Australia
^c School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia
^d ARC Centre for Green Chemistry, Monash University, Clayton, Victoria 3800, Australia

Figure S1 Cyclic voltammograms at a glassy carbon electrode ($v = 0.1 \text{ V s}^{-1}$) for 0.4 mM $[S_2W_{18}O_{62}]^{4-}$ in (---) dry CH₃CN and in (—) dry CH₂Cl₂/CH₃CN (80 : 20) containing 0.1 M Bu₄NClO₄ as the supporting electrolyte.

Figure S2 Cyclic voltammograms at a glassy carbon electrode ($v = 0.1 \text{ V s}^{-1}$) for 0.4 mM [S₂Mo₁₈O₆₂]⁴⁻ in (---) dry CH₃CN and in (—)CH₃CN solution containing 0.8 mM water and 0.1 M Bu₄NClO₄ as the supporting electrolyte.

Figure S3 Cyclic voltammograms at a glassy carbon electrode ($v = 0.1 \text{ V s}^{-1}$) for 0.3 mM $[S_2W_{18}O_{62}]^{4-}$ in CH₃CN (0.1 M Bu₄NClO₄) before (---) and after addition (—) of 50 mM triflic acid.

Figure S4 RDE voltammograms at a glassy carbon electrode ($\omega = 1790$ rpm, v = 0.01 V s⁻¹) for 0.3 mM [S₂W₁₈O₆₂]⁴⁻ in CH₃CN (0.1 M Bu₄NClO₄) before(—) and after (---) addition of 50 mM glacial acetic acid.

Figure S5 UV-vis spectra in CH₃CN (0.1 M Bu₄NClO₄) for (a) 0.02, 0.06, 0.1 and 0.2 mM $[S_2Mo_{18}O_{62}]^{4-}$ (no absorbance is found in the visible region for $\lambda > 520$ nm) and (b) as for (a) but after a one-electron bulk electrolysis showing that $[S_2Mo_{18}O_{62}]^{5-}$ absorbs light in the visible region at $\lambda > 520$ nm.

Figure S6 UV-visible spectra for (a) 0.01 mM $[S_2W_{18}O_{62}]^{4-/5-/6-}$ in (—) CH₃CN (0.1M Bu₄N ClO₄) and (---) [Bmim][PF₆], (b) $[S_2W_{18}O_{62}]^{4-}$ in CH₃CN (0.1M Bu₄NClO₄) at concentrations of 0.03 to 2 mM, (c) after bulk electrolysis of 0.02 mM $[S_2W_{18}O_{62}]^{4-}$ in CH₃CN (0.1 M Bu₄NClO₄) to generate the one (—) $[S_2W_{18}O_{62}]^{5-}$ and two (---) $[S_2W_{18}O_{62}]^{6-}$ electron reduced species.