### SUPPLEMENTARY INFORMATION

#### **List of Figures**

**Figure S1**: Characterization of  $[La(L^{Et})_3]$ : (a) IR spectrum; (b) <sup>1</sup>H NMR spectrum at 303K in C<sub>6</sub>D<sub>6</sub>; (c) <sup>19</sup>F{<sup>1</sup>H} NMR spectrum at 303K in C<sub>6</sub>D<sub>6</sub>; and (d) <sup>19</sup>F{<sup>1</sup>H} NMR spectrum at 203K in C<sub>7</sub>D<sub>8</sub>.<sup>\*</sup>

**Figure S2**: Characterization of  $[Ce(L^{Me})_3]$ : (a) IR spectrum; (b) <sup>1</sup>H NMR spectrum at 303K in C<sub>7</sub>D<sub>8</sub>; (c) <sup>1</sup>H NMR spectrum at 343K in C<sub>7</sub>D<sub>8</sub>; (d) <sup>19</sup>F{<sup>1</sup>H} NMR spectrum at 303K in C<sub>7</sub>D<sub>8</sub> and (e) <sup>19</sup>F{<sup>1</sup>H} NMR spectrum at 343K in C<sub>7</sub>D<sub>8</sub>.<sup>\*</sup>

**Figure S3**: Characterization of  $[Ce(L^{Me})_2F]_3$ : (a) <sup>1</sup>H NMR spectrum at 373K in C<sub>7</sub>D<sub>8</sub>; (b) <sup>19</sup>F{<sup>1</sup>H} NMR spectrum at 373K in C<sub>7</sub>D<sub>8</sub>.<sup>\*</sup>

**Figure S4**: Characterization of  $[Nd(L^{Me})_3]$ : (a) IR spectrum; (b) <sup>1</sup>H NMR spectrum at 303K in C<sub>7</sub>D<sub>8</sub>; and (c) <sup>19</sup>F{<sup>1</sup>H} NMR spectrum at 343K in C<sub>7</sub>D<sub>8</sub>.<sup>\*</sup>

## S5: GC /MS analyses of reaction mixture forming $[Ce(L^{Me})_3]$ and $[CeF(L^{Me})_2]_3$ :

\*Due to the high sensitivity of the complexes to moisture, traces of ligand  $HL^{Me}/HL^{Et}$  were present in the NMR spectra of the  $[Ln(L^{Me/Et})_3]$  or  $[Ln(L^{Me})_2F]_n$  products, as shown from their spectra, e.g. the two singlet or two multiplet resonances at -140 to -142 ppm and -160 to -162 ppm in the  ${}^{19}F{}^{1}H{}$  NMR spectrum, belong to F3,5 and F2,6 respectively of  $HL^{Me}/HL^{Et}$ .

If both products  $[Ln(L^{Me/Et})_3]$  and  $[Ln(L^{Me})_2F]_n$  were isolated from the same reaction, one or the other was sometimes present as a minor contaminant in the isolated  $[Ln(L^{Me/Et})_3]$  or  $[Ln(L^{Me})_2F]_n$  products, e.g. resonances at -142.8 and -177.6 ppm, which belong to  $[Ce(L^{Me})_3]$ , are visible in the <sup>19</sup>F{<sup>1</sup>H} NMR spectrum of  $[Ce(L^{Me})_2F]_3$  (Figure S3(b)).

**Figure S1**: Characterization of  $[La(L^{Et})_3]$ : (a) IR spectrum; (b) <sup>1</sup>H NMR spectrum at 303K in C<sub>6</sub>D<sub>6</sub>; (c) <sup>19</sup>F{<sup>1</sup>H} NMR spectrum at 303K in C<sub>6</sub>D<sub>6</sub>; and (d) <sup>19</sup>F{<sup>1</sup>H} NMR spectrum at 203K in C<sub>7</sub>D<sub>8</sub>.<sup>\*</sup>





**Figure S2**: Characterization of  $[Ce(L^{Me})_3]$ : (a) IR spectrum; (b) <sup>1</sup>H NMR spectrum at 303K in C<sub>7</sub>D<sub>8</sub>; (c) <sup>1</sup>H NMR spectrum at 343K in C<sub>7</sub>D<sub>8</sub>; (d) <sup>19</sup>F{<sup>1</sup>H} NMR spectrum at 303K in C<sub>7</sub>D<sub>8</sub> and (e) <sup>19</sup>F{<sup>1</sup>H} NMR spectrum at 343K in C<sub>7</sub>D<sub>8</sub>.<sup>\*</sup>

# Electronic Supplementary Material (ESI) for Dalton Transactions This journal is The Royal Society of Chemistry 2012



(b)



(d)



**Figure S3**: Characterization of  $[Ce(L^{Me})_2F]_3$ : (a) <sup>1</sup>H NMR spectrum at 373K in C<sub>7</sub>D<sub>8</sub>; (b) <sup>19</sup>F{<sup>1</sup>H} NMR spectrum at 373K in C<sub>7</sub>D<sub>8</sub>.<sup>\*</sup>





**Figure S4**: Characterization of  $[Nd(L^{Me})_3]$ : (a) IR spectrum; (b) <sup>1</sup>H NMR spectrum at 303K in C<sub>7</sub>D<sub>8</sub>; and (c) <sup>19</sup>F{<sup>1</sup>H} NMR spectrum at 343K in C<sub>7</sub>D<sub>8</sub>.<sup>\*</sup>



(a)

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is The Royal Society of Chemistry 2012



(c)

### S5: GC /MS analyses of reaction mixture forming $[Ce(L^{Me})_3]$ and $[CeF(L^{Me})_2]_3$ :



| File        | :C:\msdchem\1\DATA\sally\RK1_73A.D             |
|-------------|------------------------------------------------|
| Operator    | : VDG                                          |
| Acquired    | : 28 May 2010 15:56 using AcqMethod gen5sl a.M |
| Instrument  | : Agilent GCMS                                 |
| Sample Name | : RK1.73a (R. Kelly)                           |
| Misc Info   | : C16H12F8N2 = 384, C10H13f3N2 = 218           |
| Vial Number | : 11                                           |







File :C:\msdchem\1\DATA\sally\RK1\_73A.D Operator : VDG Acquired : 28 May 2010 15:56 using AcqMethod gen5sl\_a.M Instrument : Agilent GCMS Sample Name: RK1.73a (R. Kelly) Misc Info : C16H12F8N2 = 384, C10H13f3N2 = 218 Vial Number: 11



```
File :C:\msdchem\l\DATA\sally\RK1_73A.D
Operator : VDG
Acquired : 28 May 2010 15:56 using AcqMethod gen5sl_a.M
Instrument : Agilent GCMS
Sample Name: RK1.73a (R. Kelly)
Misc Info : C16H12F8N2 = 384, C10H13f3N2 = 218
Vial Number: 11
```



File :C:\msdchem\l\DATA\sally\RK1\_73A.D Operator : VDG Acquired : 28 May 2010 15:56 using AcqMethod gen5sl\_a.M Instrument : Agilent GCMS Sample Name: RK1.73a (R. Kelly) Misc Info : C16H12F8N2 = 384, C10H13f3N2 = 218 Vial Number: 11



## Electronic Supplementary Material (ESI) for Dalton Transactions This journal is O The Royal Society of Chemistry 2012

