ARTICLE TYPE

Bimetallic Coordination Networks based on Al(acacCN)₃: A Building Block between Inertness and Lability

Carina Merkens, Nils Becker, Kevin Lamberts, and Ulli Englert*

Received Xth XXXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX First published on the web Xth XXXXXXXX 200X DOI: 10.1039/b000000x

Supplementary Information

This journal is © The Royal Society of Chemistry [year]

Institute of Inorganic Chemistry, RWTH Aachen University, Aachen, Germany. Fax: +49-241-8092288; Tel: +49-241-8094666; E-mail: ullrich.englert@ac.rwth-aachen.de

List of Figures

S 1	Displacement ellipsoid plot of the asymmetric unit in 2a .	3
S2	Ag(I) coordination environment in 2a	3
S 3	Displacement ellipsoid plot of the asymmetric unit in 2b	4
S4	Displacement ellipsoid plot of a molecular fragment in 2c.	4
S5	Al(III) coordination environment in the network of $2c$	5
S 6	Ag(I) coordination environment in the network of $2c$	5
S 7	Experimental and simulated powder pattern of $2c$	6
S 8	Displacement ellipsoid plot of a molecular fragment in 3a	6
S9	Displacement ellipsoid plot of a molecular fragment in 3b	7
S10	Displacement ellipsoid plot of a molecular fragment in 3c .	7
S11	Temperature dependent U_{eq} of 3c .	8
S12	Simulated and experimental powder pattern of selected crystals of 3c.	9
S13	TG measurement of selected crystals of 3c .	9
S14	Topology analyis of [Ag(acacCN)] with GTECS3D	10

Fig. S1 Displacement ellipsoid plot of the asymmetric unit in 2a. Ellipsoids are drawn at 50 % probability.

Fig. S2 Ag(I) coordination environment in **2a**. The neighboring benzene molecule induces significant pyramidalization of the Ag(I) coordination environment. Symmetry operations: i=x-1, $\frac{1}{2}-y$, $z-\frac{1}{2}$, ii=1-x, $\frac{1}{2}+y$, $\frac{1}{2}-z$. Short contacts: Ag(1)...C(22) 2.541(4) Å, Ag(1)...C(21) 2.782(6) Å, and Ag(1)...C(23) 3.035(4) Å.

Fig. S3 Displacement ellipsoid plot of the asymmetric unit in 2b. Ellipsoids are drawn at 50 % probability.

Fig. S4 Displacement ellipsoid plot of a molecular fragment in 2c. Ellipsoids are drawn at 50 % probability.

Fig. S5 Al(III) coordination environment in the network of **2c**. The Al(acacCN)₃ building block with its peripheric N-donor functionalities coordinates to three Ag(I) cations, with the central Al(III) almost in the plane of the silver cations. Symmetry operations: $i = \frac{1}{2} + y$, $\frac{1}{2} - z$, 1-*x*.

Fig. S6 Ag(I) coordination environment in the network of 2c; the coordination corresponds to a trigonal pyramidal arrangement. Symmetry operations: $i^i = \frac{3}{2}$ -y, 1-z, x- $\frac{1}{2}$ and $i^{ii} = \frac{1}{2}$ +x, $\frac{1}{2}$ -y, 1-z.

Fig. S7 Experimental and simulated powder pattern of 2c.

Fig. S8 Displacement ellipsoid plot of a molecular fragment in 3a. Ellipsoids are drawn at 50 % probability.

Fig. S9 Displacement ellipsoid plot of a molecular fragment in 3b. Ellipsoids are drawn at 50 % probability.

Fig. S10 Displacement ellipsoid plot of a molecular fragment in 3c. Ellipsoids are drawn at 50 % probability.

Fig. S11 All atoms of the network structure 3c show unusual large U_{eq} . Temperature dependent single crystal X-ray diffraction experiments and void anlaysis of the network indicate statically disordered solvent molecules which affect the displacement parameters of the well-ordered framework atoms.

Table 1 Comparison of the refinement results for the framework 3c after and before treatment with the BYPASS procedure.

Compound	BYPASS procedure	assignment of well-ordered electron-density
wR_2 (all reflections)	0.1547	0.4700
R_1 (all/obs)	0.0832/0.0615	0.2091/0.1901
GOF on F^2	1.085	3.474
Diff. peak/hole (e $Å^{-3}$)	0.913 and -1.024	9.603 and -0.972

Fig. S12 Simulated and experimental powder pattern of selected crystals of 3c.

Fig. S13 TG measurement of selected crystals of **3c**. The molecular weight of the network structure is 720.4 g mol⁻¹. The assumed solvent content of eleven water molecules and one hydoxide molecule corresponds to a molecular weight of 215.2 g mol⁻¹. Elimination of the solvent within the voids of the network corresponds to a weight loss of 23 %.

This journal is © The Royal Society of Chemistry [year]

Fig. S14 Topology analysis of [Ag(acacCN)] with GTECS3D. The acacCN ligand is treated as a single node. Color code: Ag node: black and acacCN node: green.