Supporting information

Nucleoside-5'-phosphorothioate Analogues are biocompatible antioxidants Dissolving efficiently Amyloid Beta –Metal Ion Aggregates

Aviran Amir^a, Eran Shmuel^a, Rostislav Zagalsky^a, Alon Sayer^a, Yael Kogon^a, and Bilha Fischer^{*a} ^aDepartment of Chemistry, Bar-Ilan University, Ramat-Gan, 52900, Israel

> *To whom correspondence should be addressed: Prof. Bilha Fischer Department of Chemistry Bar-Ilan University Ramat-Gan 52900 Israel Fax: 972-3-6354907 Tel.: 972-3-5318303 Email: <u>bilha.fischer@biu.ac.il</u>

Table of contents

Titration of A β_{28} -Cu ⁺ complex by various chelators monitored by ¹ H-NMR3
Figure S1: $A\beta_{28}$ -Cu ⁺ complex titratied by Clioquinol (CQ)
Figure S2: $A\beta_{28}$ -Cu ⁺ complex titratied by Thiophosphate , 5 ,
Figure S3: ³¹ P-NMR of thiophosaphate , 5 , taken before and after titation
Figure S4: $A\beta_{28}$ -Cu ⁺ complex titratied by tripholyphosphate (TPP) ,8 ,4
Figure S5: ³¹ P-NMR of TPP , 8 , taken before and after titation
Figure S6: $A\beta_{28}$ -Cu ⁺ complex titratied by ADP- β -S ,6,
Figure S7: ³¹ P-NMR of ADP- β -S ,6, taken before and after titation
Figure S8: $A\beta_{28}$ -Cu ⁺ complex titratied by GDP- β -S ,9,6
Figure S9: ³¹ P-NMR of GDP- β -S ,9, taken before and after titation
Figure S10: A β_{28} -Cu ⁺ complex titratied by GTP- γ -S ,10,7
Figure S11: ³¹ P-NMR of GTP- γ -S ,10, taken before and after titation
Dynamic light scattering (DLS) measurement
Figure S12: $A\beta_{40}$ -Cu ²⁺ size by time
Figure S13: $A\beta_{40}$ -Zn ²⁺ size distrabiotion a. after Zn ²⁺ addition. b. after 45 min from Zn ²⁺ addition
Disaggregation of $A\beta_{42}$ -M ²⁺ by various chelators as measured by turbidity assay at 405 nm.
Figure S14: Chlator-dependent changes for $A\beta_{42}$ -Zn ²⁺ aggregates
Figure S15: Chlator-dependent changes for $A\beta_{42}$ -Cu ²⁺ aggregates,
Electron spin resonance (ESR) OH radical assay
Figure S16: Inhibition of OH radical production by EDTA ascorbic acid and GSH
as percent of control
Figure S17: Inhibition of OH radical production by ADP ,4, and ADP-β-S ,6, as percent of control
Figure S18: Inhibition of OH radical production by ATP ,1, and APCP-γ-S ,7, as percent of control

 $Cu^{\scriptscriptstyle +}$ titration of 1 mM A β_{28} solution monitored by $^1H\text{-}NMR$

Fig. S1: $A\beta_{28}$ -Cu⁺ complex titrated by clioquinol (CQ). a: $A\beta_{28}$ pure pD 7. b: $A\beta_{28}$ -Cu⁺ 1:1. c: $A\beta_{28}$ -Cu⁺-CQ 1:1:6.

Fig. S2: $A\beta_{28}$ -Cu⁺ complex titrated by thiophosphate, **5**,. a: $A\beta_{28}$ pure pD 7. b: $A\beta_{28}$ -Cu⁺ 1:1. c: $A\beta_{28}$ -Cu⁺-thiophosphte 1:1:6.

Fig S3: ³¹P-NMR of thiophosphate, **5**, taken before and after the titration. a. thiophosphate before titration pD 6.93. b. after titration. c. Inorganic phosphate pD 6.9.

Fig. S4: $A\beta_{28}$ -Cu⁺ complex titrated by tripolyphosphate (TPP), **8**,. a: $A\beta_{28}$ pure pD 6.9. b: $A\beta_{28}$ -Cu⁺ 1:1. c: $A\beta_{28}$ -Cu⁺-TPP 1:1:6 pD 6.8.

Fig S5: ³¹P-NMR of tripolyphosphate (TPP), **8**, taken before and after the titration. a. TPP before titration pD 6.9. b. after titration pD 6.8.

Fig. S6: Aβ₂₈-Cu⁺ complex titrated by ADP-β-S, **6**,. a: Aβ₂₈ pure pD 7.2. b: Aβ₂₈-Cu⁺ 1:1. c: Aβ₂₈-Cu⁺-ADP-β-S 1:1:5 pD 8.

Fig S7: ³¹P-NMR of ADP- β -S, **6**, taken before and after the titration. a. ADP- β -S before titration pD 7.2. b. after titration pD 8.

Fig. S8: Aβ₂₈-Cu⁺ complex titrated by GDP-β-S, **9**,. a: Aβ₂₈ pure pD 7.3. b: Aβ₂₈-Cu⁺ 1:1. c: Aβ₂₈-Cu⁺-GDP-β-S 1:1:6 pD 7.8.

Fig S9: ³¹P-NMR of GDP- β -S, **9**, taken before and after the titration. a. GDP- β -S before titration pD 7.3. b. GDP- β -S after titration pD 7.8.

Fig. S10: Aβ₂₈-Cu⁺ complex titrated by GTP-γ-S, **10**,. a: Aβ₂₈ pure pD 7.2. b: Aβ₂₈-Cu⁺ 1:1. c: Aβ₂₈-Cu⁺-GDP-β-S 1:1:3.2 pD 7.4.

Fig S11: ³¹P-NMR of GTP- γ -S, **10**, taken before and after the titration. a. GTP- γ -S before titration pD 7.2. b. GTP- γ -S after titration pD 7.4. c. Free GTP pD 7.4

Dynamic light scattering (DLS) messurments

Fig S12: $A\beta_{40}$ -Cu²⁺ size by time DLS measurement.

Fig S13: $A\beta_{40}$ -Zn²⁺ size DLS measurement: (a) after Zn²⁺ addition (b) after 45 min from Zn²⁺ addition.

Disaggregation of $A\beta_{42}\text{-}M^{2+}$ by various chelators as measured by turbidity assay at 405 nm.

Fig S14: Chelator-depended changes of $A\beta_{42}$ -Zn²⁺ aggregates.

Fig S15: Chelator-depended changes of $A\beta_{42}$ -Cu²⁺ aggregates.

Electron spin resonance (ESR) radical assay.

Fig S16: Inhibition of OH radical production by EDTA, ascorbic acid and GSH as percent of control.

Fig S17: Inhibition of OH radical production by ADP, 4, and ADP- β -S, 6, as precent of control.

Fig S18: Inhibition of OH radical production by ATP, **1**, and APCP- γ -S, **7**, as percent of control.