Electronic Supplementary Information (ESI)

A Ferrocenyl-Guanidine Derivative as Highly Selective Electrochemical and Colorimetric Chemosensor Molecule for Acetate Anion.

Antonia Sola, Alberto Tárraga* and Pedro Molina*

Departamento de Química Orgánica; Universidad de Murcia; Campus de Espinardo; 30100 Murcia, Spain. Fax: +34 868 884 149; Tel: +34 868 887 496 and +34 868 887 499; E-mail: <u>pmolina@um.es</u>; E-mail: <u>atarraga@um.es</u>

Table of contents

¹ H- and ¹³ C- NMR spectra of compounds 1	S 4						
Figure ESI 1. CV and OSWV of 1 when the oxidation was carried out							
in the range of 0-700mV.							
Figure ESI 2. Evolution of the OSWV of 1 in the presence of AcOH upon							
addition of increasing amounts of AcO ⁻ in CH ₃ CN.							
Figure ESI 3. Evoluion of the OSWV of 1 in the presence of increasing							
amounts of F^{-} and Bu ₄ NOH in CH ₃ CN.							
Figure ESI 4. Evolution of the OSWV of 1 in the presence of AcOH upon							
addition of increasing amounts of F ⁻ in CH ₃ CN.	S 6						
Figure ESI 5. Evoluion of the OSWV of 1 in the presence of increasing							
amounts of $(Bu_4N)_2CO_3$ in CH ₃ CN.	S 7						
Figure ESI 6. Evolution of the OSWV and LSW of 1 in the presence of							
increasing amounts of NaClO in DMF.	S 7						
Figure ESI 7. Changes in the absorption spectrum of 1 upon addition of							
increasing amounts of F^- and Bu ₄ NOH in CH ₃ CN.	S 8						
Figure ESI 8. Changes in the absorption spectrum of 1 upon addition of							
increasing amounts of (Bu ₄ N) ₂ CO ₃ in CH ₃ CN.	S 8						
Figure ESI 9. Changes in the absortion spectrum of 1 upon addition of							
increasing amounts of NaClO in DMF.	S9						
Figura ESI 10. Semilogarithmic plot for determining the detection limit							
towards AcO ⁻ .	S9						
Table ESI 1. Electrochemical and UV-vis titration data	S10						
Figura ESI 11. Evolution of the OSWV and changes in the absorption							
spectrum of $1 \cdot H^+$ upon addition of increasing amounts of AcO ⁻ .	S11						
Fiure ESI 12. Evolution of the OSWV of $1 \cdot H^+$ in the presence of increasing							
amounts of several anions in CH ₃ CN.	S12						
Figure ESI 13. Changes in the absorption spectrum of $1 \cdot H^+$ upon addition o	f						
increasing amounts of several anions.	S13						
Figure ESI 14. Titration profile for $1 \cdot H^+$ indicating the formation of							
complexes.	S14						
Figure ESI 15. Changes in the ¹ H-NMR spectrum of $1 \cdot H^+$ upon							
addition of increasing amounts of Cl ⁻ .	S15						

Figure ESI 16. Changes in the ¹ H-NMR spectrum of $1 \cdot H^+$ upon	
addition of increasing amounts of NO_3^- .	S15
Figure ESI 17. Changes in the ¹ H-NMR spectrum of $1 \cdot H^+$ upon	
addition of increasing amounts of HSO ₄ ⁻ .	S16
Figure ESI 18. Changes in the ¹ H-NMR spectrum of $1 \cdot H^+$ upon	
addition of increasing amounts of Br	S 16
Figure ESI 19. ESI mass spectrum of the complex formed between $1 \cdot H^+$	
and Cl ⁻ .	S17
Figure ESI 20. ESI mass spectrum of the complex formed between $1 \cdot H^+$	
and Br ⁻ .	S17
Figure ESI 21. ESI mass spectrum of the complex formed between $1 \cdot H^+$	
and NO_3^- .	S17
Figure ESI 22. ESI mass spectrum of the complex formed between $1 \cdot H^+$	
and HSO_4^- .	S18

$2\{(E)\mbox{-}4\mbox{-}[2\mbox{-}(4\mbox{-}nitrophenyl)\mbox{diazenyl}] phenylamino\mbox{-}1\mbox{,}3\mbox{-}diaza[3]\mbox{ferrocenophane, }1\mbox{-}$

¹H NMR (200MHz, CDCl₃)

¹³C NMR (50 MHz, CDCl₃)

Figure ESI 1. a) OSWV and b) CV, from 0-700 mV of compound **1** ($c = 1x10^{-4}$ M in CH₃CN) using [(n-C₄H₉)₄N]PF₆ (0.1 M) as supporting electrolyte, scanned at 0.1 V s⁻¹.

Figure ESI 2. Evolution of the OSWV of **1** ($c = 1x10^{-4}$ M in CH₃CN) using [(*n*-Bu)₄N]PF₆ scanned at 0.1 V s⁻¹ in the presence of 20 equiv of AcOH, upon adition of AcO⁻ from 0 (black) to 3 (blue) equiv.

Figure ESI 3. Evolution of the OSWV of **1** ($c = 1x10^{-4}$ M in CH₃CN) using [(*n*-Bu)₄N]PF₆ scanned at 0.1 V s⁻¹ upon adition of a) F⁻ and b) Bu₄NOH, from 0 (black) to 6 (blue) equiv.

Figur ESI 4. a) Evolution of the OSWV of **1** ($c = 1x10^{-4}$ M in CH₃CN) using [(*n*-Bu)₄N]PF₆ scanned at 0.1 V s⁻¹ in the presence of 20 equiv. of AcOH upon adition of F⁻, from 0 (black) to 3 equiv (blue).

Figure ESI 5. a) Evolution of the OSWV of **1** ($c = 1 \cdot 10^{-4}$ M) in CH₃CN/[(n-Bu)₄N]PF₆ scanned at 0.1 V s⁻¹ upon addition of (Bu₄N)₂CO₃ ($c = 2.5 \cdot 10^{-2}$ M in CH₃CN), from 0 (black) to 1 (pink) equiv.

Figure ESI 6. a) Evolution of the OSWV of **1** ($c = 1 \cdot 10^{-4}$ M) in DMF/[(n-Bu)₄N]PF₆ scanned at 0.1 V s⁻¹ upon adition of NaClO ($c = 2.5 \cdot 10^{-2}$ M in DMF), from 0 (black) to 5 (pink) equiv. b) Evolution of the linear sweep voltammetry (LSV) of **1** (1x10⁻⁴ M) in DMF/[(n-Bu)₄N]PF₆ obtained using a rotating disk electrode at 100 mVs⁻¹ and 1000 rpm., upon addition of increasing amounts [from 0 (black) to 5 equiv (blue)] of NaClO.

Figure ESI 7. Changes in the absorption spectra of **1** (c $=1 \times 10^{-4}$ M) in CH₃CN upon addition of: a) F⁻, and b) Bu₄NOH, from 0 to 5 equiv. Arrows indicate the absorptions that increase or decrease during the titration process.

Figure ESI 8. Changes in the absorption spectra of **1**, ($c = 1 \cdot 10^{-4}$ M in CH₃CN) (black), upon addition of increasing amounts of (Bu₄N)₂CO₃ ($c = 2.5 \cdot 10^{-2}$ M in CH₃CN)until 1 equiv (pink line).

Figure ESI 9. Changes in the absorption spectra of **1**, ($c = 1 \cdot 10^{-4}$ M in DMF) (black), upon addition of increasing amounts of NaClO ($c = 2.5 \cdot 10^{-2}$ M in DMF)until 3 equiv (blue line).

Figure ESI 10. Absorbance of **1** ($c = 1 \cdot 10^{-4}$ M in CH₃CN) at each concentration of AcO⁻ added, normalized between the minimum absorbance, found at zero equiv of AcO⁻, and the maximum absorbance.

Compound	E_p^{la}	E_p^{2a}	ΔE_p^{2b}	$\lambda_{max}(10^{-3} \epsilon)^{c}$	$\Delta \lambda^{\mathrm{d}}$	IP ^e	Kas
1	440	830		230(14.14), 270(9.55), 410(18.40)			
[1 •AcO ⁻]	258		-182	231(14.96), 272(10.78),440(20.86)	30	330, 415	$3.81 x 10^6 \pm 0.55^f$
$[1 \cdot \mathbf{H}]^+$		865		231(16.44),344(19.13)	66		
$\left[1\mathbf{\cdot H}\right]^{+}+\mathrm{AcO}^{-}$	410	800		230(14.14), 270(9.55), 410(18.40)			
$[1 \cdot H]^+ + Cl^-$		724	-141	231(17.81),352(19.42)	8	291, 345	$2.80 x 10^{11} \pm 0.91^{g}$
$[1 \cdot \mathbf{H}]^+ + \mathbf{Br}^-$		683	-182	350(19.18)	6	286, 347	$3.27 x 10^5 \pm 0.19 d^f$
$\left[1 \cdot \mathbf{H}\right]^{+} + \mathrm{NO}_{3}^{-}$		758	-107	350(18.85)	6	277, 350	$1.66 x 10^5 \pm 0.15^{\rm f}$
$[1 \cdot \mathbf{H}]^+ + \mathrm{HSO}_4^-$		758	-107	230(16.93),352(18.87)	8	280, 350	$1.98 x 10^5 \pm 0.18^{\rm f}$

Table ESI 1. Electrochemical and UV-Vis data of 1 and $[1 \cdot H]^+$, and in the presence of the corresponding anions.

^a in mV; ^b electrochemical shifting, in mV, observed upon addition of the corresponding anion; ^c λ_{max} in nm, ϵ in dm³mol⁻¹cm⁻¹; ^d shifting in nm from the lower energy band in the complex and in the free receptor; ^e isosbestic points in nm; ^f in M⁻¹; ^g in M⁻².

Figure ESI 11. a) Evolution of the OSWV of **1** ($c = 1 \cdot 10^{-4}$ M) in CH₃CN/[(*n*-Bu)₄N]PF₆ scanned at 0.1 V s⁻¹ containing 1 equiv. of HBF₄ (red line) when 1 equiv of:AcO⁻ was added (blue line). The black line corresponds to the OSWV of the neutral ligand **1**. b) Changes in the absorption spectra of [**1**·H⁺], ($c = 1 \cdot 10^{-4}$ M in CH₃CN) (red), upon addition of increasing amounts of AcO⁻ until 1 equiv (blue line). The black line, which appears superimposed to the blue one, corresponds to the neutral ligand **1**.

Figure ESI 12. Evolution of the OSWV of **1** ($c = 1 \cdot 10^{-4}$ M) in CH₃CN/[(n-Bu)₄N]PF₆ scanned at 0.1 V s⁻¹ containing 1 equiv. of HBF₄ (red line) when 2 equiv of: a) Cl⁻, b) Br⁻, c) NO₃⁻, and d) HSO₄⁻, were added (pink lines). The black line corresponds to the OSWV of the neutral ligand **1**.

Figure ESI 13. Changes in the absorption spectra of $[1 \cdot H^+]$, (c = $1 \cdot 10^{-4}$ M in CH₃CN) (red), upon addition from 0 to 3 equiv of a) Cl⁻, b) Br⁻, c) NO₃⁻, d) HSO₄⁻, (purple lines). The black line corresponds to the neutral ligand **1.** Arrows indicate the absorptions that increase or decrease during the titration process.

Figure ESI 14. Binding profile associated with the observed maximum absorbance of ligand $[1 \cdot H^+]$ (c = $1 \cdot 10^{-4}$ M in CH₃CN) upon addition of increasing amounts of a) Cl⁻, indicating the formation of 1:2 complex and b) Br⁻, c) NO₃⁻, d) HSO₄⁻, indicating the formation of 1:1 complexes (receptor/anion).

Figure ESI 15. Changes in the ¹H-NMR spectrum of $[\mathbf{1}\cdot\mathbf{H}^+]$ in CD₃CN upon addition of increasing amounts of Cl⁻ from 0 equiv (top) to 2 equiv. (bottom).

Figure ESI 16. Changes in the ¹H-NMR spectrum of $[1 \cdot H^+]$ in CD₃CN upon addition of increasing amounts of NO₃⁻ from 0 equiv (top) to 1 equiv. (bottom).

Figure ESI 17. Changes in the ¹H-NMR spectrum of $[1 \cdot H^+]$ in CD₃CN upon addition of increasing amounts of HSO₄⁻ from 0 equiv (top) to 1 equiv. (bottom).

Figure ESI 18. Changes in the ¹H-NMR spectrum of $[1 \cdot H^+]CD_3CN$ upon addition of increasing amounts of Br⁻ from 0 equiv (top) to 1 equiv. (bottom).

Figure ESI 19. ESI mass spectrum of the complex formed between $[1 \cdot H^+]$ and Cl⁻.

Figure ESI 20. ESI mass spectrum of the complex formed between $[1 \cdot H^+]$ and Br⁻.

Figure ESI 21. ESI mass spectrum of the complex formed between $[1 \cdot H^+]$ and NO₃⁻.

Figure ESI 22. ESI mass spectrum of the complex formed between $[1 \cdot H^+]$ and HSO₄⁻.