Electronic Supporting Information Revisiting the Formation of Giant Molybdenum Blue Clusters

Bogdan Botar^{*,a}, Arkady Ellern^b and Paul Kögerler^{*,a,c}

^a Peter Grünberg Institut (PGI-6), Forschungszentrum Jülich GmbH, D-52425, Jülich, Germany. E-mail:

b.botar@fz-juelich.de

^b Ames Laboratory, Iowa State University, Ames, IA 50011, USA

^c Institut für Anorganische Chemie, RWTH Aachen University, D-52074 Aachen, Germany. E-mail:

p.koegerler@fz-juelich.de; paul.koegerler@ac.rwth-aachen.de

Figure S1. Ball-and-stick representation of the mixed-valent Keplerate-type polyoxomolybdate **3**, emphasizing the twelve slightly domed pentagonal {(Mo)Mo₅} building blocks (Mo in octahedral MoO₆ environments: dark blue spheres, Mo in pentagonal-bipyramidal MoO₇ environments: light blue spheres), where the Mo–(μ_3 -O) bonds are shown as black lines, which are interlinked by thirty Mo(=O)(OH₂) groups (purple spheres). Also shown are two out of nine crystallographically located K⁺ positions (large green spheres). Furthermore, sulfate groups coordinating to the {(Mo)Mo₅} building blocks from the interior of the cluster sphere are represented for an arbitrarily chosen configuration (one out of five evenly disordered S–O_{term} vectors per {(Mo)Mo₅} group; S: yellow, S–O bonds; yellow). O: small red spheres, hydrogen positions not shown for clarity.

Figure S2. FT-IR spectra (KBr pellets) of molybdenum blue compounds: From bottom to top: (1) the spherical $\{Mo_{102}\}$ -type Keplerate **3a**; (2) the Na⁺ salt of **3**; (3) the Na⁺ salt of the $\{Mo_{368}\}$ cluster, **1a**; (4) the Na⁺ salt of the $\{Mo_{154}\}$ wheel-type polyanion, **2a**.

Figure S3. TGA (top) and DTA (bottom) data for **3a**. Crystalline samples were heated from 25 °C to 600 °C at a rate of 10 °C/min in an inert gas stream (N₂, 60 ml/min).