Luminescence Mechanochromism in Cyclometallated Ir(III) Complexes Containing Picolinamine.[†]

Teresa F. Mastropietro,^{*a,b*} Yogesh J. Yadav,^{*a,b*} Elisabeta Ildyko Szerb,^{*a,b*} Anna Maria Talarico,^{*a,a,b*} Mauro Ghedini,^{*a,b*} and Alessandra Crispini^{*b,c*}

Supporting Information.

Figure S1. TGA traces of powder complex **1** (experimental mass loss 2.78% corresponds to one water molecule calcd. 2.72%) and crystals **1a** (experimental mass loss 6.54 % corresponds to one ethanol molecule calcd. 6.67%)

20

15

10

Figure S3. Emission spectrum of: (0) crystals 1b after complete solvatomorphic transformation and (•) crystals 1a

55 Figure S4. Measured PXRD patterns of a grinded sample of 1b (a) and 2 (b).

³⁰ Figure S5. Measured PXRD pattern of a grinded sample of 1b superimposed with the one measured on the orange 1b crystals after transformation in air.

Compound	1a	1b	2	3		
empirical formula	C ₃₀ H ₃₀ ClIrN ₄ O	$C_{28}H_{24}ClIrN_4$	$C_{28}H_{24}F_6IrN_4P$	$C_{28}H_{24}ClIrN_4O_4$		
Crystal system	Monoclinic	Orthorhombic	Orthorhombic	Orthorhombic		
Space group	P2(1)/c	P2(1)2(1)2(1)	pca(2)1	pca(2)1		
Z	4	4	4	4		
fw	690.23	644.16	753.68	708.16		
a, Å	14.2312(13)	9.8167(17)	11.0809(13)	11.0556(10)		
b, Å	11.7771(11)	13.747(3)	15.5306(18)	15.2516(15)		
c,Å	19.2326(18)	20.447(4)	16.1226(19)	15.3882(14)		
$\alpha, \beta, \gamma, deg$	90,	90, 90, 90	90, 90, 90	90, 90, 90		
	104.770(4), 90					
V, Å ³	3116.9(5)	2759.3(9)	2774.6(6)	2594.7(4)		
$D_c, g cm^{-3}$	1.471	1.551	1.804	1.813		
μ , \Box mm ¹	4.396	4.957	4.935	5.291		
Independent	6109 [0.0504]	4749 [0.0811]	4876 [0.0473]	5648 [0.0403]		
reflections [R(int)]						
Data/restraints/par	6109 / 0 / 361	4749 / 0 / 295	4876 / 1 / 358	5648 / 1 / 331		
ameters						
Goodness-of-fit on F ²	1.258	0.859	1.170	1.215		
Absolute structure	-	0.02(1)	0.087(8)	0.002(7)		
parameter						
${}^{a}R1 [I > 2 \sigma (I)]$	0.0372	0.0429	0.0261	0.0184		
^{b,c} wR2	0.1377	0.1017	0.0751	0.0474		

Table S1. Crystal data and selected structure refinement parameters for 1a, 1b, 2 and 3.

 ${}^{a}R1 = \sum ||F_{0}| - |F_{c}|| / \sum |F_{0}|. {}^{b}wR2 = \{ \sum [w(F_{0}^{2} - F_{c}^{2})^{2}] / [(w(F_{0}^{2})^{2}] \}^{1/2}. {}^{c}w = 1/[\sigma^{2}(F_{0}^{2}) + (aP)^{2} + bP] \text{ with } P = [F_{0}^{2} + 2F_{c}^{2}] / 3, a = 0.0860$ (1a), 0.0812 (1b), 0.0627 (2), 0.0216 (3) and b = 7.6815 (1a), 0.0000 (1b), 0.06647 (2), 1.2086 (3).

Table S2. Selected distances (Å) and angles (°) in 1a-3

	1a	1b	2	3
Ir(1)-C(11)	2.026(7)	2.03(1)	2.041(5)	2.014(4)
Ir(1)-C(22)	2.022(8)	2.03(1)	2.046(6)	2.005(4)
Ir(1)-N(1)	2.101(6)	2.05(1)	2.072(4)	2.052(3)
Ir(1)-N(2)	2.065(6)	2.028(5)	2.072(5)	2.041(3)
Ir(1)-N(3)	2.229(5)	2.20(1)	2.207(5)	2.192(4)
Ir(1)-N(4)]	2.174(6)	2.15(1)	2.170(5)	2.124(2)
N(1)-Ir(1)-N(2)	172.8(2)	174.5(3)	174.1(2)	174.2(1)
N(1)-Ir(1)-N(3)	98.7(2)	97.5(3)	98.6(2)	98.8(1)
N(1)-Ir(1)-N(4)	88.8(2)	86.2(3)	87.1(2)	85.5(1)
N(2)-Ir(1)-N(3)	87.0(2)	86.6(3)	86.4(2)	86.8(2)
N(2)-Ir(1)-N(4)	96.7(3)	97.5(3)	97.0(2)	97.3(1)
N(4)-Ir(1)-N(3)	77.3(2)	77.9(3)	77.0(2)	77.6(1)
C(11)-Ir(1)-C(22)	90.0(3)	91.6(4)	87.4(2)	86.9(2)
C(11)-Ir(1)-N(1)	80.6(3)	80.5(4)	79.0(2)	79.6(1)
C(11)-Ir(1)-N(2)	94.1(3)	95.0(4)	96.1(2)	94.8(2)
C(11)-Ir(1)-N(3)	174.4(3)	174.4(4)	175.8(2)	177.0(1)
C(11)-Ir(1)-N(4)	97.1(3)	96.7(3)	99.4(2)	99.8(1)
C(22)-Ir(1)-N(1)	94.4(3)	96.6(4)	95.9(2)	97.7(1)
C(22)-Ir(1)-N(2)	80.6(3)	80.2(4)	80.4(2)	80.2(2)
C(22)-Ir(1)-N(3)	95.6(2)	93.9(4)	96.3(2)	95.9(1)
C(22)-Ir(1)-N(4)	172.6(2)	171.6(3)	172.9(2)	173.2(1)

Table S5. N-H····Cl in	iteractions	in 1a .	
	H···A	D···A	<(DHA)
$N(3)-H(3a)\cdots Cl(1)$	2.646	3.46(1)	151.20
$N(3)-H(3b)\cdots Cl(1)^{i}$	2.751	3.50(1)	141.85
5 O(1)-H(1a)····Cl(1)	2.273	3.09(1)	172.89
O(2)-H(2A)···Cl(1) ^{<i>ii</i>}	1.879	2.69(1)	167.11
i = -x+2, y-1/2, -z+1/2			
ii = -x+1, y-1/2, -z+1/2			

Table S3. N-H…Cl interactions in 1a