Electronic Supplementary Information for

A Dodecanuclear Zn Cluster Sandwiched by Polyoxometalate Ligands

Guibo Zhu^a, Yurii V. Geletii^a, Chongchao Zhao^a, Djamaladdin G. Musaev^b, Jie Song^a, and Craig L. Hill^a*

^aDepartment of Chemistry, Emory University, Atlanta, GA 30322 USA. Fax: 404-727-6076; Tel: 404-727-6611; E-mail: <u>chill@emory.edu</u>. ^bCherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, GA 30322

Figure S1. IR spectra of $K_{16}\alpha$ -[Si₂W₁₈O₆₆]·25H₂O (black) and 1 (red)

Figure S2. Polyhedral views of the dodecanuclear-transition metal clusters in the reported sandwich-type POMs: Fe_{12}/Ti_{12} cluster (a) and Ni_{12} cluster (b) The color code is as follows: Fe/Ti (yellow), Ni (blue) and oxygen (red).

The Fe₁₂O₄₆/Ti₁₂O₄₆ core (Figure S2a)^{1, 2} is composed of four groups of three edge-shared, corner-linked FeO₆/TiO₆ octahedra, and outside the metal cluster are four {P₂W₁₅} units. The Ni₁₂ (Figure S2b)³ is formed by the connection of three distorted [Ni₄O(OH)₃] units, and outside the Ni₁₂ cluster are three {PW₉} units, a WO₄ tetrahedron and a [W₇O₂₆(OH)]¹¹⁻ unit.

Figure S3. Combined polyhedral/ball-and-stick representation of **1** in the lattice. The color code is as follows: zinc (green), tungsten (grey), silicon (yellow), and K (purple).

Figure S4. The absorption of 1 (9 μ M in water) at 250 nm as a function of time showing no change.

Figure S5. Notation of atoms and comparison of the calculated important bond distances (in Å) of 1_m with their experimental values (in parenthesis) in 1. The calculated important geometry parameters of 1_m are in good agreement with their experimental values reported for the dimer complex 1. These findings justify the use of model 1_m to study electronic properties of 1.

Figure S6. Representative HOMO and LUMO orbitals of 1_m calculated at the B3LYP/[Lanl2dz + 6-31G(d)] level of theory.

References

- 1. C. P. Pradeep, D. L. Long, P. Kogerler and L. Cronin, *Chem Commun*, 2007, 4254-4256.
- 2. Y. Sakai, S. Ohta, Y. Shintoyo, S. Yoshida, Y. Taguchi, Y. Matsuki, S. Matsunaga and K. Nomiya, *Inorg. Chem.*, 2011, **50**, 6575-6583.
- 3. H. M. Zhang, Y. G. Li, Y. Lu, R. Clerac, Z. M. Zhang, Q. Wu, X. J. Feng and E. B. Wang, *Inorg Chem*, 2009, **48**, 10889-10891.