Supporting Information

Terphenyl-phenanthroline conjugate as a Zn^{2+} sensor: H₂PO₄⁻ induced tuning of emission wavelength

Vandana Bhalla*, Ruchi Tejpal and Manoj Kumar

Department of Chemistry, UGC Sponsored centre of advanced studies-I, Guru Nanak Dev University,

Amritsar- 143005, Punjab, India

vanmanan@yahoo.co.in

Page No.	Table of contents
S 3	General experimental procedure
S4	¹ H NMR Spectrum of compound 3
S 5	¹³ C NMR Spectrum of compound 3
S 6	Mass Spectrum of compound 3
S7	¹ H NMR Spectrum of compound 5
S8	¹³ C NMR Spectrum of compound 5
S 9	Mass Spectrum of compound 5
S10	¹ H NMR Spectrum of compound 7
S11	¹³ C NMR Spectrum of compound 7
S12	Mass Spectrum of compound 7
S13	¹ H NMR Spectrum of compound 8
S14	Mass spectrum of compound 8
S15	¹ H NMR spectrum of compound 5 in tetrachloroethane : acetonitrile (7:3)

- **S16** ¹H NMR spectrum of compound **5** in tetrachloroethane : acetonitrile (7:3) in presence of Zn^{2+} ions
- S17 Mass spectrum of 5-Zn complex
- **S18** Mass spectrum of 5-Zn complex with $H_2PO_4^-$
- **S19-S20** IR spectrum of compound **5** in the presence of various ions
- S21-S25 SPECFIT data

General Experimental Procedures

UV-Vis and fluorescence Titrations

UV-Vis and fluorescence titrations were performed with 1×10^{-5} M solution of receptor **5** and **7** in THF. Typically, aliquots of freshly prepared standard solutions ($10^{-1} - 10^{-3}$ M in THF) of metal perchlorates (Pb²⁺, Hg²⁺, Ba²⁺, Cd²⁺, Ag⁺, Zn²⁺, Cu²⁺, Ni²⁺, Co²⁺, K⁺, Mg²⁺, Na⁺ and Li⁺) were added and the spectra of the samples were recorded. Similarly, aliquots of freshly prepared solutions of anions (F⁻, Cl⁻, Br⁻, I⁻, HSO₄⁻, NO₃⁻, H₂PO₄⁻) were added to record the absorption and emission behaviour of **5** and **7**.

¹H NMR Experiments

The stock solution of compound **5** (10^{-2} M) was prepared in tetrachloroethane and perchlorate salts of Zn^{2+} (2 x 10^{-2} M) was prepared in CD₃CN for ¹H NMR titration experiments. The titration experiment was done in solvent mixture of tetrachloroethane and acetonitrile (7:3).

Mass Spectrum of compound 3

Mass spectrum of compound 5

Mass spectrum of compound 7

Mass spectrum of compound 8

¹H NMR of compound 5 in Tetrachloroethane: CD₃CN (7:3)

¹H NMR of compound 5 in Tetrachloroethane: CD₃CN (7:3) in presence of Zn²⁺ ions

Mass spectrum of 5-Zn complex

Mass spectrum of 5-Zn complex in the presence of H₂PO₄⁻

IR spectra of compound 5

IR spectra of compound 5 +Zn²⁺ + OAc⁻

IR spectra of compound 5 +Zn+ H₂PO₄⁻

Specfit Data

M :L :: 2:1

[PROGRAM]

Name = SPECFIT

Version = 3.0

[FILE]

Name = FL ZN COMPLETE TITRATION.FAC

Path = C:\Program Files\SPECFIT\DATA\

Date = 24-Aug-07

Time = 12:16:42 AM

Ncomp = 2

Nmeas = 14

Nwave = 411

 [FACTOR ANALYSIS]

 Tolerance = 1.00E-09

 Max.Factors = 10

 Num.Factors = 5

 Significant = 3

 Eigen Noise = 1.417E+00

 Exp't Noise = 1.417E+00

 # Eigenvalue Square Sum Residual Prediction

 1 2.377E+07 4.496E+05 8.840E+00 Data Vector

 2 3.672E+05 8.242E+04 3.785E+00 Data Vector

 3 7.088E+04 1.154E+04 1.417E+00 Data Vector

 4 4.504E+03 7.038E+03 1.106E+00 Probably Noise

 5 1.599E+03 5.439E+03 9.727E-01 Probably Noise

[MODEL]

Date = 24-Aug-07

Time = 12:33:47 AM

Model = 0

Index = 3

Function = 1

Species = 3

Params = 3

[SPECIES]	[COLORED]	[FIXED]	[SPECTRUM]
100	False	False	
010	True	False	
210	True	False	
[SPECIES]	[FIXED]	[PARAMETER]	[ERROR]
100	True	0.00000E+00 +/-	0.00000E+00
010	True	0.00000E+00 +/-	0.00000E+00
210	False	<mark>1.05141E+01 +/-</mark>	3.55472E-01

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is The Royal Society of Chemistry 2012

[CONVERGENCE]

Iterations = 8 Convergence Limit = 1.000E-04Convergence Found = 6.928E-05Marquardt Parameter = 0.0Sum(Y-y)^2 Residuals = 1.65195E+06Std. Deviation of Fit(Y) = 1.69454E+01

[STATISTICS]

Experimental Noise = 1.417E+00

Relative Error Of Fit = 27.0593%

Durbin-Watson Factor = 1.1162

Goodness Of Fit, Chi^2 = 1.431E+02

Durbin-Watson Factor (raw data) = None

Goodness Of Fit, Chi^2 (raw data) = None

[COVARIANCE]

1.606E+00

[CORRELATION]

1.000E+00

[END FILE]

```
Electronic Supplementary Material (ESI) for Dalton Transactions This journal is \textcircled{O} The Royal Society of Chemistry 2012
```



```
Electronic Supplementary Material (ESI) for Dalton Transactions This journal is \textcircled{O} The Royal Society of Chemistry 2012
```


