Supporting Information for:

Flexibility and Swing Effect on the Adsorption of Energy-Related Gases in ZIF-8: Combined Experimental and Simulation Study

David Fairen-Jimenez,^{a,d,*} Raimondas Galvelis,^b Antonio Torrisi,^b Alistair Gellan, ^a Michael T. Wharmby,^c Paul A. Wright,^c Caroline Mellot-Draznieks^b and Tina Düren^a

^aInstitute for Materials and Processes, School of Engineering, The University of Edinburgh, United Kingdom; ^bDepartment of Chemistry, University College London, United Kingdom; ^cEaStCHEM School of Chemistry, University of St. Andrews, United Kingdom; ^dCurrent address: Department of Chemical and Biological Engineering, Northwestern University, USA.

*To whom correspondence should be addressed. E-mail: David.Fairen-Jimenez@Northwestern.edu

Table of contents

Section S1. ZIF-8 structure: Pore size distribution and partial charges	1
Section S2. Gas adsorption on ZIF-8	.3
Section S3. DFT minimization of CH ₄ on ZIF-8AP	8
Section S4. DFT minimization of CH ₄ on ZIF-8HP.	.10

Section S1. Pore size distribution and partial charges of ZIF-8

Figure S1. Pore size distribution (PSD) for the ZIF-8 structure.

Table S1: Point charges on Imidazole ligand in ZIF-8 and in isolated molecule, extracted from DFT (PBE) calculation (Mülliken charges).

	Imidazole	Cluster	Periodic
	(fig. A)	(fig. B)	(fig.C)
Ν	-0.358	-0.459	-0.403
Ν	-0.323	-0.422	-0.403
C _{double}	0.020	0.061	0.004
C _{double}	-0.003	0.019	0.004
C _{NN}	0.277	0.374	0.317
C _{methyl}	-0.304	-0.302	-0.358
H _{double}	0.070	0.050	0.107
H _{double}	0.076	0.078	0.107
H _{methyl}	0.105	0.102	0.147
H _{methyl}	0.109	0.100	0.147
H _{methyl}	0.131	0.148	0.147
H _(N)	0.200	-	-
Zn	-	0.361	0.367
Zn	-	0.378	0.367

Figure S2: a) Imidazole, b) cluster and c) periodic boundary conditions representations for the extraction of Mulliken charges.

Section S2. Gas adsorption on ZIF-8.

Figure S3. Adsorption isotherms of methane on ZIF-8 at (*from top-left to bottom-right*) 125, 150, 200, 240, 270 and 300 K. Experiments, black circles; UFF simulations on ZIF-8AP, red diamonds.

Table S2. Scaling factors (ϕ) applied to UFF-simulated isotherms of methane on ZIF-8AP in order to match experimental maximum amount adsorbed for isotherms at different temperatures.

Temperature (K)	125	150	200	230	270	300
ϕ	1.01	0.98	0.96	0.88	0.79	0.74

Figure S4. Adsorption isotherms of methane on ZIF-8 at (*from top-left to bottom-right*) 125, 150, 200, 240, 270 and 300 K. Experiments, black circles; UFF(*) simulations on ZIF-8AP, red diamonds.

Figure S5. Adsorption isotherms of methane on ZIF-8 at (*from top-left to bottom-right*) 125, 150, 200, 240, 270 and 300 K. Experiments, black circles UFF(+) on ZIF-8AP, closed red diamonds; UFF(+) on ZIF-8HP, open red diamonds

Figure S6. Adsorption isotherms of methane on ZIF-8 at 125, 200 and 300 K. Experiments, black circles; *(left)* Bux et al force field, and *(right)* Dreiding force field. ZIF-8AP, red triangles; ZIF-8HP, blue squares.

Figure S7. Adsorption isotherms of *(from top to bottom)* ethane and propane on ZIF-8 at 273 K. Experiments, black circles UFF on ZIF-8AP, closed red triangles.

Section S3. DFT minimization on CH₄ in ZIF-8AP.

Configuration α_2 : The second most stable configuration (Figure S8) has BE of – 17.2 kJ mol⁻¹ and it corresponds to CH₄ located on top of the C=C double bond, with H(CH₄)…C=C distances of ~2.8 Å, likewise the most stable configuration α_1 (Figure 6).

Figure S8 Configuration α_2 for one CH₄ in ZIF-8AP, resulting from energy minimizations with DFT calculations with Grimme dispersive correction.

Configuration α_3 : Very similar to the most stable configuration (configuration α_1), with CH₄ on top of C=C double bond of imidazole ligand with one hydrogen pointing towards the double bond, having binding energy BE = -16.4 kJ mol⁻¹ (Figure S9). As in configuration α_2 , the short H(CH₄)…C=C distances are of ~2.8 Å.

Figure S9: Configuration a_3 for one CH₄ in ZIF-8AP, resulting from energy minimizations with DFT calculations with Grimme dispersive correction.

Configuration \beta 2: The fifth stable configuration with BE of -16.0 kJ mol⁻¹ is characterised by CH₄ located at the centre of the 6-ring pore-window, similar to configuration β_1 , with H(CH₄)···C=C distance of 2.9Å (Figure S10). The peculiar feature of this configuration when compared with configuration β_1 , is the absence of weak interactions between H(CH₄) and the -CH₃ groups of imidazolate, as indicated by the relatively long H(CH₄)···C(CH₃) distances of 5.3 Å. Likewise at Site I, the main interaction of CH₄ with the ZIF-8AP framework occurs with the C=C double bond of the imidazolate ring, including an additional contribution of weak interactions with the –CH₃ groups of the imidazolate linker on β_1 , which are not present on β_2 . Indeed, this is clearly shown by the DFT calculations, where the differences between β_1 and β_2 are about 2 kJ mol⁻¹ in BE. Another important difference between the two configurations is the position of CH₄ along the perpendicular axis to the 6-ring window (Figure 7 and S10). In fact, in configuration β_1 , CH₄ is located above this plane, outside the "sodalite" central cage of ZIF-8AP, facilitating the interaction of the H(CH₄) with the –CH₃ groups of imidazolate linker. On the other hand, in configuration β_2 , methane is located below the plane, within the "sodalite" central cage of ZIF-8AP, and far from the –CH₃ groups of imidazolate linker.

Figure S10: Configuration β_2 for one CH₄ in ZIF-8AP, resulting from energy minimizations with DFT calculations with Grimme dispersive correction.

Section S4. DFT minimization on CH₄ in ZIF-8HP.

	Δq _{тот} (СН₄)	Δq(C)	Δq(H)	Δq(H)	Δq(H)	Δq(H)	
			ZIF-8AP				
α1	-0.0025	-0.0074	-0.0041	+0.0128	-0.0025	-0.0013	
α2	+0.0035	+0.0000	-0.0024	-0.0032	+0.0116	-0.0025	
α3	+0.0038	+0.0006	-0.0023	-0.0025	+0.0113	-0.0033	
βı	+0.0146	-0.0041	-0.0049	-0.0041	-0.0041	-0.0041	
β ₂	-0.0044	+0.0076	-0.0057	+0.0049	-0.0056	-0.0056	
Y	+0.0005	+0.0006	-0.0002	+0.0002	+0.0001	-0.0002	
ZIF-8HP							
Θ	-0.0266	+0.0139	+0.0032	+0.0029	+0.0032	+0.0034	

Table S3. Mülliken charge (Δq) variation for CH₄ species in the different adsorption sites of ZIF-8AP and ZIF-8HP, with respect to the isolated molecule. $\Delta q = q(CH_4 \text{ in ZIF-8HP}) - q(CH_4 \text{ isolated})$.