Supporting Information

"[(C₂H₅)₃NH]₂Cu₂(C₂O₄)₃: A Three-Dimensional Metal-Oxalato Framework Showing Structural Related Dielectric and Magnetic Transitions at Around 165 K"

by B. Zhang et al

365.7 mg Cu(NO₃)₂·2H₂O (1.6 mmol) was dissolved into 10.0ml H₂O. Meanwhile, H₂C₂O₄·2H₂O 376.3 mg (3.0 mmol) was dissolved into 10.0 ml H₂O, then 604 mg Et₃N (6.0 mmol) was added. The solution was added into the solution of Cu(NO₃)₂. Muddy liquor was obtained. The mixture was filtered and filtrate was remained in room-temperature. Blue-diamond crystal was appeared on the bottom of baker after three weeks. 280.0 mg crystal was collected and washed with water quickly and dried in air. The yield is 63%. Elemental analysis: C₁₈H₃₂O₁₂N₂Cu₂, calc. C 36.30, H 5.42, N 4.70; exp. C 36.41, H 5.42, N 4.76. IR on KBr pellet (cm⁻¹): 3403(bw), 2976(w), 2938(m), 2739(m), 2678(m), 2491(w), 1672(s), 1639(s), 1606(s), 1457(m), 1417(m), 1361(w), 1289(m), 1171(w), 1035(w), 804(m), 489(m), 412(w).

IR experiment was performed on Bio-rad FTS6000 with KBr pellet. Thermogravimetric analysis was carried out on Shimadzu DTG-60 Analyzer with 10°C/min from room-temperature to 600°C. Powder X-ray diffraction pattern was obtained on a Rigaku RINT2000 diffractometer at room temperature with Cu K α (λ = 1.54056 Å) radiation in a flat-plate geometry. DSC experiment was performed on a TOLEDO DSC1 STAR with sweeping rate of 10°C/min under nitrogen atmosphere.

A piece of single crystal was selected for X-ray diffraction. Data was collected at 293 K, 180 K, 155 K and 135 K on Nonius Kappa CCD with Mo K α ($\lambda = 0.71073$ Å) radiation.¹ The crystal structure was solved by direct method, hydrogen atoms of ethyl groups and N were found by calculation. All of nonhydrogen atoms were refined anisotropically.² The crystallographic data were listed on Table S1. The crystal discussion was performed with data of 135 K. Crystallographic data of **1** at 135 K: $C_{18}H_{32}Cu_2N_2O_{12}$, Mr = 595.54, monoclinic, space group $P 2_1/c$, a = 8.6987(1) Å, b = 34.1408(4) Å, c = 8.6081(1) Å, $\beta = 107.578(1)^o$, V = 2437.07(5) Å³, Z = 4, $D_C = 1.623$ g·cm⁻³, $\mu = 1.808$ mm⁻¹, 27882

measured data, 5518 unique, $R_{int} = 0.0368$. $R_I = 0.0308$ for 4832 observations of I $\ge 2\sigma(I_0)$, $wR_2 = 0.0823$ for all data, GOF = 1.101. CCDC-852903/6.

The dielectric measurements were performed on pellet of compressed crystal at TH2828 from 340 K to 113 K. The voltage is parallel with the thinnest direction of pellet.

Magnetization measurement was performed on polycrystalline sample tightly packed by parafilm inside a capsule on a Quantum Design MPMS 7 System. Magnetic susceptibility data was corrected for the diamagnetism of the sample by Pascal constant (-136.5×10^{-6} cm³mol⁻¹ per Cu), parafilm and capsule.³

Reference:

- 1. Otwinowski & Minor, Denzo and Scalpack, 1997.
- 2. G. M. Sheldrick, University of Göttingen, Göttingen(Germany), SHELX-97, 1997.
- 3. O. Kahn, *Molecular Magnetism*; John Wiely & Sons Inc., New York, 1993.

Т, К	293	180	155	135
Cell parameters				
<i>a</i> , Å	8.8294(1)	8.7407(1)	8.7156(1)	8.6987(1)
<i>b</i> , Å	33.7719(4)	33.9886(4)	34.0813(4)	34.1408(4)
c , Å	8.8052(1)	8.6771(1)	8.6360(1)	8.6081(1)
β, °	107.901(1)	107.725(1)	107.632(1)	107.578(1)
<i>V</i> , Å ³	2498.48(5)	2455.46(5)	2444.22(5)	2437.07(5)
Space group	P 2 ₁ /c	P 2 ₁ /c	P 2 ₁ /c	P 21/c
T _{min.} , T _{max.} ,	0.582, 0.683	0.576, 0.682	0.590,0.681	0.584, 0.680
$\theta_{\min}, \ \theta_{\max}, $ °	0.987, 27.51	0.984, 27.52	0.979, 27.54	0.982,27.54
Completeness,%	98.7	98.4	97.9	98.2
No. total refins.	30048	28663	28252	27882
No. unique reflns. (R _{int})	5699(0.0422)	5569(0.0394)	5535(0.0284)	5518(0.0268)
No. obs. [l≥2σ(l₀)]	3688	4523	4667	4832
No. params.	340	332	340	319
Exti.	0.0036(5)	0.0025(4)	0.0026(4)	0.0026(4)
R, wR2 (l≥2σ(l₀))	0.0325, 0.0893	0.0321, 0.0842	0.0299,0.0775	0.0308,0.0802
R, wR2 (all data)	0.0593, 0.0965	0.0436,0.0885	0.0394, 0.0807	0.0371,0.0823
GOF	1.071	0.980	1.075	1.101
$\Delta \rho$, e/Å ³	0.337(-0.265)	0.540(-0.421)	0.420(-0.332)	0.815(-0.373)
Max. and mean Δ/σ	0.001/0.000	0.001/0.000	0.001, 0.000	0.001,0.000
CCDC	852906	852905	852904	852903

Table S1. Crystallographic data of 1 at 293K, 180 K, 155 K and 135 K

Т, К	Donor-H Acceptor	D– H	H A	D A	D – HA
		Å	Å	Å	o
135	N(1) -H(1) -O(9)	0.93	1.87	2.789(2)	170
	N(2) -H(2) -O(5)	0.93	1.84	2.763(2)	170
155	N(1) -H(11) -O(9)	0.93	1.87	2.789(2)	170
	N(2) -H(2) -O(5)	0.93	1.84	2.762(2)	169
180	N(1) -H(1) -O(9)	0.93	1.86	2.786(2)	170
	N(2) -H(2) O(5)	0.93	1.85	2.768(3)	169
293	N(1) -H(1) -O(9)	0.91	1.90	2.789(2)	166
	N(2) -H(2) -O(5)	0.91	1.89	2.784(3)	166

Table S2. Hydrogen bonds in **1** at 135 K, 155 K, 180 K and 293 K.

 Table S3. Cu–O bond distance (Å) of 1 at different temperatures.

Т, К	293	180	155	135
Cu1-0,	1.985(2), 1.993(2)	1.964(2), 1.978(2)	1.957(2),1.975(2)	1.956(2),1.975(1)
Å	2.064(2), 2.083(2)	2.029(2), 2.004(2)	2.107(2),2.023(1)	2.003(1),2.006(1)
	2.148(2), 2.148(2)	2.190(2),2.271(2)	2.209(1),2.304(2)	2.221(1),2.321(2)
Cu2-O,	1.974(2), 1.988(2)	1.960(2),1.987(2)	1.957(1), 1.989(1)	1.956(1), 1.989(1)
Å	2.070(2), 2.086(2)	2.031(2), 2.034(2)	2.010(2), 2.014(2)	1.993(1), 1.998(2)
	2.170(2), 2.202(2)	2.214(2), 2.258(2)	2.239(4), 2.293(2)	2.253(2), 2.311(2)

Figure S1. IR spectra of 1 at room-temperature.

Figure S2. TGA plot of 1 with 10°C/min..

Figure S3. X-ray powder diffraction pattern of 1 at room-temperature.

Figure S4. ORTEP drawing of 1 with 30% ellipsoid at 135 K.

Figure S5. Three-dimensional network of anion [Cu₂(C₂O₄)₃²⁻]_n viewed along [101] at 135 K. H atoms were omitted for clarity. Colour code: Cu blue, C grey, O red, N, blue.

Figure S6. Cations with labels at different temperatures.

Figure S7. Temperature-dependent Cu–O bond distance in **1** (Cu1, solid; Cu2, empty). Top two are Cu–O distances on axial direction, bottom four are Cu–O distances in the equatorial plane.

Figure S8. Temperature-dependent O-Cu-O angles in 1 (Cu1, solid; Cu2, empty).

Figure S9. $1/\chi$ -vs-T (black square) plot and Curie-Weiss fitting(red solid) between 50-120K, and $170K \sim 300K$.