Supporting Information

Syntheses, structures and physical properties of transition metal-organic frameworks assembled from trigonal heterofunctional ligand

Shu-Yan Song,^{*a*} Xue-Zhi Song,^{*a,b*} Shu-Na Zhao,^{*a,b*} Chao Qin,^{*a*} Sheng-Qun Su,^{*a,b*} Min Zhu,^{*a,b*} Zhao-Min Hao,^{*a,b*} Hong-Jie Zhang^{*,*a*}

^{*a*}State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China ^{*b*}Graduate School of the Chinese Academy of Sciences, Beijing, 100039, China

*Corresponding author

Email: hongjie@ciac.jl.cn (Hong-Jie Zhang)

Tel: 86-431-85262127.

Fax: 86-431-85698041.

Fig. S1 Supplementary structural description of 2.

Fig. S2 Supplementary structural description of 3.

Text S1: Detail description of the structures of 4.

Scheme S1: Schematic diagram of the existing form and coordination mode of the ligand bpydbH₂ in **4**.

Fig. S3 Schematic view of coordination environment of Cu ions in 4.

Fig. S4 Supplementary structural description of 5.

Fig. S5 Simulated (red) and experimental as-synthesized (black) powder X-ray diffraction (PXRD) patterns of **2**(a), **3**(b), **5**(c) and **6**(d).

Fig. S6 TGA curve of compounds 2, 3, 5 and 6.

Table S1: Selected bond lengths (Å) and angles (deg) for complexes 1-6.

 Table S2: Hydrogen bonds for complexes 1, 3 and 5.

Fig. S1 Supplementary structural description of **2**. (a) ORTEP drawing of asymmetric unit in **2** (50% probability ellipsoids). Hydrogen atoms and lattice water molecule are omitted for clarity. (b) Schematic representation of the 2-fold interpenetrating frameworks.

Fig. S2 Supplementary structural description of **3**. (a) Schematic view of the single layer in **3**, pink dash lines represent hydrogen bonds and yellow rods represent that nickel ions are ligated by linear linker. (b) Schematic diagram of two kinds of 4-connected nodes and their connectivity. In this structure, the violet and green spheres represent independent bpydbH¹⁻ ligands and the Ni(II) ions, respectively.

Text S1: Detail description of the structures of 4.

Although, compound **4** crystallizes in the same space group as compound **2**, herein some points different from **2** will be presented. Comparing with the Co²⁺ ions, the ions radius of Cu²⁺ is shorter than Co²⁺ which means that Cu²⁺ may adopt a lower coordination number of five. Cu1 is coordinated by O4, O6A, O7C, O8C and N3D; Cu2 is coordinated by O1, O2, O3, O5A and N1B. Both Cu1 and Cu2 display distorted tetragonal pyramid coordination geometries, which can be indicated by the calculated value of the τ_5 parameter ($\tau_5 \approx 0.057$, 0.032 for Cu1 and Cu2, respectively) introduced by Addison, Reedijk and coworkers in 1984.^{S1} The axial positions of tetragonal pyramid geometries around Cu1 and Cu2 were occupied by O8C and O2, respectively. One of the two carboxylate groups in μ_2 - η^1 : η^1 fashion with syn-syn conformation bridges Cu1 and Cu2 to form a bimetallic secondary building unit (SBU) with the Cu1…Cu2 separation of 2.884 Å.

Reference S1: A.W. Addison, T. N. Rao, J. Reedijk, J. van Rijn and G. C. Verschoor, *J. Chem. Soc., Dalton Trans.*, 1984, 1349.

Scheme S1: Schematic diagram of the existing form and coordination mode of the ligand $bpydbH_2$ in 4.

Fig. S3 Schematic view of coordination environment of Cu(II) ions in 4. Symmetry codes: A = x,-y,-1/2+z; B = -1/2+x,1/2-y,-1/2+z; C = x,2-y,-1/2+z; D = 1/2+x,-1/2+y,z.

Fig. S4 (a) Schematic diagram of the nodes and their connectivity. (b) Schematic view of the 4-connected single framework in 5. In this framework, the yellow and orange spheres represent two independent bpyHdb¹⁻ ligands, and the cyan spheres represent the Zn(II) ions.

Fig. S5 Simulated (red) and experimental as-synthesized (black) powder X-ray diffraction (PXRD) patterns of **2**(a), **3**(b), **5**(c) and **6**(d).

Fig. S6 TGA curve of compounds 2, 3, 5 and 6.

	Complex 1						
Mn1-O1	2.187(3)	Mn1-O7#4	2.110(3)				
Mn1-O2	2.403(3)	Mn1-O6#5	2.122(3)				
Mn1-O3	2.225(3)	Mn1-N1#6	2.244(3)				
O7#4-Mn1-O6#5	89.86(13)	O7#4-Mn1-O1	93.50(13)				
O6#5-Mn1-O1	104.93(13)	O7#4-Mn1-O3	171.33(11)				
O6#5-Mn1-O3	91.84(13)	O1-Mn1-O3	94.27(12)				
O7#4-Mn1-N1#6	92.44(12)	O6#5-Mn1-N1#6	106.33(14)				
O1-Mn1-N1#6	148.17(12)	O3-Mn1-N1#6	78.92(12)				
O7#4-Mn1-O2	95.33(12)	O6#5-Mn1-O2	160.85(13)				
O1-Mn1-O2	56.43(10)	O3-Mn1-O2	85.79(12)				
N1#6-Mn1-O2	91.88(11)						
		Complex 2					
Co1-O1	2.030(5)	Col-O5	2.041(5)				
Co1-O6	2.381(5)	Co1-O8#5	2.011(6)				
Co1-N3#6	2.068(6)	Co1-O4#7	2.273(6)				
Co2-O6	2.267(6)	Co2-O7#5	2.056(6)				
Co2-N1#8	2.082(8)	Co2-O3#7	2.088(6)				
Co2-O4#7	2.258(6)	Co2-C19#7	2.474(8)				
O8#5-Co1-O1	162.2(2)	O8#5-Co1-O5	93.1(2)				
O1-Co1-O5	94.6(2)	O8#5-Co1-N3#6	100.5(2)				
O1-Co1-N3#6	91.7(2)	O5-Co1-N3#6	111.0(2)				
O8#5-Co1-O4#7	86.6(2)	O1-Co1-O4#7	80.6(2)				
O5-Co1-O4#7	159.4(2)	N3#6-Co1-O4#7	89.2(2)				
O8#5-Co1-O6	86.2(2)	O1-Co1-O6	84.0(2)				
O5-Co1-O6	59.1(2)	N3#6-Co1-O6	168.7(2)				
O4#7-Co1-O6	100.4(2)	O7#5-Co2-O2	161.4(2)				
O7#5-Co2-N1#8	96.0(3)	O2-Co2-N1#8	97.1(3)				
O7#5-Co2-O3#7	93.1(2)	O2-Co2-O3#7	97.5(3)				
N1#8-Co2-O3#7	100.2(3)	O7#5-Co2-O4#7	83.4(2)				
O2-Co2-O4#7	88.4(2)	N1#8-Co2-O4#7	161.2(3)				
O3#7-Co2-O4#7	61.2(2)	O7#5-Co2-O6	81.1(2)				
O2-Co2-O6	84.9(2)	N1#8-Co2-O6	94.0(3)				
O3#7-Co2-O6	165.2(2)	O4#7-Co2-O6	104.4(2)				
Complex 3							
Ni1-O1#2	2.0548(19)	Ni1-O1#3	2.0548(19)				
Nil-Olw	2.086(2)	Ni1-O1w#4	2.086(2)				
Ni1- N2	2.094(2)	Ni1-N2#4	2.094(2)				
O1#2-Ni1-O1#3	180.0	O1#2-Ni1-O1w#4	88.19(9)				
O1#3-Ni1-O1w#4	91.81(9)	O1#2-Ni1-O1w	91.81(9)				
O1#3-Ni1-O1w	88.19(9)	O1w#4-Ni1-O1w	180.00(11)				
O1#2-Ni1-N2	89.12(8)	O1#3-Ni1-N2 90.88(8)					
O1w#4-Ni1-N2	91.97(9)	O1w-Ni1-N2	88.03(9)				

Table S1: Selected bond lengths (Å) and angles (deg) for complexes 1-6.

O1#2-Ni1-N2#4	90.88(8)	O1#3-Ni1-N2#4	89.12(8)	
O1w#4-Ni1-N2#4	88.03(9) O1w-Ni1-N2#4		91.97(9)	
N2-Ni1-N2#4	180.0			
	Com	plex 4		
Cu1-O4	1.935(4)	Cu1-N3#6	1.993(5)	
Cu1-O6#5	1.936(4)	Cu1-O7#7	2.019(4)	
Cu1-O8#7	2.336(5)	Cu2-O1	1.976(4)	
Cu2-O2	2.352(5)	Cu2-O3	2.000(4)	
Cu2-N1#8	1.969(7)	Cu2-O5#5	1.975(4)	
O4-Cu1-O6#5	160.1(2)	O4-Cu1-N3#6	94.1(2)	
O6#5-Cu1-N3#6	89.00(19)	O4-Cu1-O7#7	91.46(18)	
O6#5-Cu1-O7#7	91.02(18)	N3#6-Cu1-O7#7	163.5(2)	
O4-Cu1-O8#7	91.51(19)	O6#5-Cu1-O8#7	106.73(19)	
N3#6-Cu1-O8#7	104.7(2)	O7#7-Cu1-O8#7	59.63(17)	
N1#8-Cu2-O5#5	92.8(3)	N1#8-Cu2-O1	157.5(2)	
O5#5-Cu2-O1	92.39(19)	N1#8-Cu2-O3	93.7(3)	
O5#5-Cu2-O3	155.57(19)	O1-Cu2-O3	90.58(19)	
N1#8-Cu2-O2	97.3(2)	O5#5-Cu2-O2	99.81(19)	
O1-Cu2-O2	60.27(18)	O3-Cu2-O2	102.70(19)	
	Com	plex 5		
Zn1-O1	2.019(2)	Zn1-O5	1.990(2)	
Zn1-O3#3	1.958(3)	Zn1-O8#4	1.984(3)	
O3#3-Zn1-O8#4	131.75(11)	O3#3-Zn1-O5	109.28(11)	
O8#4-Zn1-O5	100.54(11)	O3#3-Zn1-O1	103.04(10)	
O8#4-Zn1-O1	109.27(11)	O5-Zn1-O1	98.28(10)	
	Com	plex 6		
Cd1-O1	2.295(3)	Cd1-O1#4	2.295(3)	
Cd1-O3	2.417(3)	Cd1-O3#4	2.417(3)	
Cd1-O2	2.474(3)	Cd1-O2#4 2.474(3)		
Cd1-N1#3	2.293(4)			
N1#3-Cd1-O1	136.02(7)	N1#3-Cd1-O1#4	136.02(7)	
O1-Cd1-O3#4	108.04(12)	O1#4-Cd1-O3	108.04(12)	
O1-Cd1-O3	82.62(12)	O1#4-Cd1-O3#4	82.62(12)	
N1#3-Cd1-O3	82.76(8)	N1#3-Cd1-O3#4	82.76(8)	
N1#3-Cd1-O2#4	87.69(7)	N1#3-Cd1-O2	87.69(7)	
O1-Cd1-O2#4	130.13(11)	O1#4-Cd1-O2	130.13(11)	
O3-Cd1-O2#4	80.84(12)	O3#4-Cd1-O2	80.84(12)	
O1-Cd1-O2	54.10(9)	O1#4-Cd1-O2#4	54.10(9)	
O3-Cd1-O2	98.57(13)	O3#4-Cd1-O2#4	98.57(13)	
O2#4-Cd1-O2	175.37(14)	O3-Cd1-O3#4	165.53(17)	
O1-Cd1-O1#4	87.95(15)			

Symmetry codes: Complex 1: #4 = x+1,y,z-1; #5 = x-1,y,z-1; #6 = -x+1,y-1/2,-z+1/2; 2: #5 = x+1,y-1/2,-z+1/2; 3: x+1,y-1/2,-z+1/2,-z+1/2; 3: x+1,y-1/2,-z+1/2,

x,-y,z+1/2; #6 = x+1/2,-y+1/2,z+1/2; #7 = x,-y+2,z+1/2; #8 = x-1/2,y-1/2,z; 3: #2 =

 $\begin{aligned} x-1/2,-y+3/2,z+1/2; &\#3 &= -x+1/2,y-1/2,-z-1/2; &\#4 &= -x,-y+1,-z; &\#5 &= x,-y,z-1/2; &\#6 &= x+1/2,y-1/2,z; &\#7 &= x,-y+2,z-1/2; &\#8 &= x-1/2,-y+1/2,z-1/2; &5: &\#3 &= x-1,y-1,z; &\#4 &= x+1,y-1,z; &6: &\#3 \\ &= x-1/2,y-1/2,z-1; &\#4 &= -x+1,y,-z+3/2. \end{aligned}$

Table S2: Hydrogen bonds (lengths and angles, Å and deg) for complexes 1, 3 and 5.

D-H…A	<i>d</i> (D-H)	$d(\mathbf{H}^{\cdots}\mathbf{A})$	$d(\mathbf{D}\cdots\mathbf{A})$	∠(DHA)
Complex 1				
O(4)-H(4A)O(5)#5	0.90(2)	1.57(2)	2.461(5)	175(8)
N(3)-H(3A)O(8)#7	0.92(2)	1.90(6)	2.555(5)	126(6)
Complex 3				
O(1W)-H(1B)O(5)#5	0.70(6)	2.05(6)	2.746(3)	171(7)
O(1W)-H(1A)O(2)#2	0.81(6)	1.93(6)	2.698(3)	158(6)
O(3)-H(1O)O(2)#6	0.894(19)	1.74(3)	2.595(3)	158(5)
Complex 5				
N(2)-H(1A)O(2)#5	0.902(19)	1.94(3)	2.669(4)	137(4)
N(2)-H(1A)O(5)#5	0.902(19)	2.41(4)	3.083(4)	132(4)
N(4)-H(2A)O(6)#6	0.899(19)	1.95(3)	2.721(4)	142(4)
N(4)-H(2A)O(1)#6	0.899(19)	2.49(4)	3.068(4)	123(3)
N(4)-H(2A)O(3)#7	0.899(19)	2.58(4)	3.028(4)	111(3)

Symmetry codes: Complex 1: #5 = x-1,y,z-1; #7 = -x-1,y-1/2,-z+3/2; 3: #2 = x-1/2,-y+3/2,z+1/2;

#5 = -x+1,-y+1,-z; #6 = x-1/2,-y+5/2,z+1/2; 5: #5 = x,y,z+1; #6 = x,y+1,z-1; #7 = x-1,y,z-1.