Electronic Supplementary Information

Formation of N-heterocyclic diphosphine ligands from Ag(I)-assisted condensation reactions between bdppeda and formaldehyde and their binuclear silver(I) complexes

Sha Sun,^{*a*} Zhi-Gang Ren,^{*a*} Ju-Hua Yang,^{*a*} Run-Tian He,^{*a*} Fan Wang,^{*a*} Xin-Yi Wu,^{*a*} Wei-Jie Gong,^{*a*} Hong-Xi Li^{*a*} and Jian-Ping Lang^{**a,b*}

^a Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China. Fax: 86-512-65880089; E-mail: jplang@suda.edu.cn (jplang)

^b State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China

Contents

Scheme S1. Possible mechanism for the formation of $[Ag_2(L_1)_2(\eta,\eta-\mu-ClO_4)_2](ClO_4)_2(1)$ from reactions of $[Ag(MeCN)_4]ClO_4$ with bdppeda and HCOOH.S3

Scheme S2. Possible mechanism for the formation of $[Ag_2(L_2)_2(\mu-Cl)_2]$ (2) from reactions of AgCl with bdppeda and HCHO.....S3

Figure S4. Experimental (black) and simulated (red) p-XRD patterns for 1 (a); 2(b); 3(c).....S7

Scheme S1. Possible mechanism for the formation of $[Ag_2(L_1)_2(\eta,\eta-\mu-ClO_4)_2](ClO_4)_2$ (1) from reactions of $[Ag(MeCN)_4]ClO_4$ with bdppeda and HCOOH.

Scheme S2. Possible mechanism for the formation of $[Ag_2(L_2)_2(\mu-Cl)_2]$ (2) from reactions of AgCl with bdppeda and HCHO.

Figure S1. Positive-ion ESI MS of complex **1** in DMF. (a) The full data ranging from m/z = 100-1500; (b) tested (black) and simulated (gray) data at m/z = 675.3 for the parent dication $[Ag_2(L_1)_2(ClO_4)_2]^{2+}$; (c) tested (black) and simulated (gray) data at m/z = 467.2 for $[L_1]^+$ cation.

Figure S2. Positive-ion ESI MS of complex **2** in DMF. (a) The full data ranging from m/z = 100-1500; (b) The tested (black) and simulated (gray) data at m/z = 609.1 for the parent dication $[Ag_2(HL_2)_2Cl_2]^{2+}$; (c) The tested (black) and simulated (gray) data at m/z = 1190.8 for $[Ag_2(L_2)_2Cl]^+$ cation. (d) The tested (black) and simulated (gray) data at m/z = 575.1 for the $[Ag(L_2)]^+$ cation.

Figure S3. Positive-ion ESI MS of complex **3** in DMF. (a) The full data ranging from m/z = 100-1500; (b) The tested (black) and simulated (gray) data at m/z = 611.1 for the parent dication $[Ag_2(L_1)_2Cl_2]^{2^+}$; (c) The tested (black) and simulated (gray) data at m/z = 752.9 for $[Ag_2(L_1)Cl_2]^+$ cation. (d) The tested (black) and simulated (gray) data at m/z = 716.9 for the $[Ag_2(L_1)Cl_2]^+$ cation. (e) tested (black) and simulated (gray) data at m/z = 467.2 for $[L_1]^+$ cation.

(c) **Figure S4**. Experimental (black) and simulated (red) p-XRD patterns for **1** (a); **2**(b); **3**(c).