Support Information

Nano scale manganese oxide within Faujasite zeolite as an efficient and biomimetic water oxidizing catalyst

Mohammad Mahdi Najafpour^{1,2*}, Babak Pashaei¹

¹Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran ²Center of Climate Change and Global Warming, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran

*Corresponding author; Phone: (+98) 241 415 3201; E-mail: mmnajafpour@iasbs.ac.ir

Material and methods

All reagents and solvents were purchased from commercial sources and were used without further purification. TEM and SEM were carried out with Philips CM120 and LEO 1430VP, respectively. The X-ray powder patterns were recorded with a Bruker, D8 ADVANCE (Germany) diffractometer (Cu-K α radiation). Manganese atomic absorption spectroscopy (AAS) was performed on an Atomic Absorbtion Spectrometer Varian Spectr AA 110. Prior to analysis, the oxide (10.0 mg metal) were added to 1 mL of concentrated nitric acid and H₂O₂, left at room temperature for at least 1 h to ensure that the oxides were completely dissolved. The solutions were then diluted to 25.0 mL and analyzed by AAS.

Synthesis

First, $Mn(CH_3COO)_2.4H_2O$ in 50 mL water was introduced into faujasite zeolite at room temperature for 4 h. After washing, $KMnO_4$ in KOH solution (50 mL water, 0.1 M KOH) was added to the manganese ion-containing faujasite zeolite. After two hours, the solid was filtered, washed and dried at 60 °C.

Table	1S.
-------	-----

Sample	$Mn(CH_3COO)_2.4H_2O$	$KMnO_4$	Mn
	used in ion	(M)	content
	exchange (M)		of
			zeolite
			(wt %)
1	0.0081	0.0064	0.65
2	0.016	0.012	1.14
3	0.024	0.019	1.47
4	0.032	0.025	1.68
5	0.04	0.032	1.98
6	0.081	0.036	2.34
7	0.163	0.046	2.47
8	0.244	0.054	2.52
9	0.326	0.064	2.87
10	0.408	0.077	2.96
11	0.571	0.09	3.46
12	0.816	0.12	3.73
13	*	*	5.64

*Best catalyst (%5.64):

First, $Mn(CH_3COO)_2.4H_2O$ (0.2 M, 50 mL) was introduced into faujasite zeolite at room temperature for 24 h. Then zeolite was washed and, again, $Mn(CH_3COO)_2.4H_2O$ (0.2 M, 50 mL) was added to zeolite at room temperature for 24 h. This procedure was repeated by $Mn(CH_3COO)_2.4H_2O$ (0.5 M, 50 mL) two times. After washing, KMnO₄ in KOH solution (7.0 gr, 50 mL water, 0.1 M KOH) was added to the manganese ion-containing faujasite zeolite. After two hours, the solid was filtered, washed and dried at 60 °C.

Water Oxidation

Oxygen evolution from aqueous solutions in the presence of $(NH_4)_2Ce(NO_3)_6$ (Ce(IV)) was measured using an HQ40d portable dissolved oxygen meter connected to an oxygen monitor with digital readout. The reactor was maintained at 25.0 °C in a water bath. In a typical run, the instrument readout was calibrated against air-saturated distilled water stirred continually with a magnetic stirrer in the air-tight reactor. After ensuring a constant baseline reading, the water in the reactor was replaced with Ce(IV) solution. Without catalyst, Ce(IV) was stable in this condition and oxygen evolution was not observed. After deaeration of Ce(IV) solution with argon, manganese oxides as several small particles were added, and oxygen evolution was recorded with the oxygen meter under stirring (Fig. S1). The formation of oxygen was followed, and oxygen formation rates per manganese site were obtained from linear fits of the data.

Fig. S1. The reactor set-up for oxygen evolution experiment from aqueous solution in the presence $(NH_4)_2Ce(NO_3)_6$ (Ce(IV)) and manganese oxide within Faujasite zeolite.

Fig. S2. BET diagram for Faujasite zeolite

Fig. S3. BJH diagram for Faujasite zeolite

Fig. S4. DH diagram for Faujasite zeolite

Fig. S5. Adsorption / Desorption Isotherm diagram for Faujasite Zeolite

Fig. S6. BET diagram for manganese oxide within Faujasite zeolite

Fig. S7. BJH diagram for manganese oxide within Faujasite zeolite

Fig. S8. DH diagram for manganese oxide within Faujasite zeolite

Fig. S9. Adsorption / Desorption Isotherm diagram for manganese oxide within Faujasite zeolite

(a)

(b)

(c)

(d)

(e)

(f)

(g)

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is O The Royal Society of Chemistry 2012

(h)

(i)

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is O The Royal Society of Chemistry 2012

(j)

(k)

(l)

Fig. S10. IR spectra of the Manganese Oxides within Faujasite zeolite for Mn/Zeolite different ratios which that amount of zeolite constant. Contents of manganese in zeolite: a=0.1g, b=0.2g, c=0.3g, d=0.4g, e=0.5g, f=1g, g=2g, h=3g, i=4g, j=5g, k=7g, l=10g, m=Z5D (20g). In all IR spectra: 3420-3440, 1640, 1020-1030 cm⁻¹ are assigned to OH stretching, H₂O and the Si-O-(Al)Si vibrations.

(a)

(b)

(e)

(f)

Fig. S11. SEM images of manganese oxides within Faujasite zeolite (sample of ?) (a-f).

(a)

(b)

30

(c)

(d)

31

(e)

(f)

32

(g)

(h)

Fig. S12. TEM images of manganese oxides within Faujasite zeolite (manganese: 0.5%) (a-h).

Table 2S The rate of water oxidation by the various manganese oxides as catalysts for water oxidation.

		TOF ^a		
Commonwel	0.11	(mmol	D.f	
Compound	Oxidant	O ₂ /mol	References	
		$Mn.s^{-1}$)		
Nano scale	Ce(IV)	2.62	This Work	
manganese				
oxide within				
NaY zeolite				
CaMn ₂ O ₄ .H ₂ O				
(Nano	Ce(IV)	2.2	1	
particles)				
CaMn ₂ O ₄ .H ₂ O	Ce(IV)	0.54	2	
Amorphous	$Ru(bpy)_3^{3+}$	0.06		
Manganese				
8	Ce(IV)	0.52	3	
Oxides				
CaMn ₂ O ₄ .4H ₂ O	Ce(IV)	0.32	2	
Mn oxide	$\mathbf{Pu}(\mathbf{hny})^{3+}$	0.28	1	
nanoclusters	Ku(bpy)3	0.20		
Nano	$\operatorname{Ru}(\operatorname{bpy})_3^{3+}$	0.14	5	
manganese				
oxide - Bovine	Ce(IV)	0.27		
Serum				
Albumin				
Nano-sized α-	Ce(IV)	0.15	6	
Mn ₂ O ₃				
Octahedral	$Ru(bpy)_3^{3+}$	0.11		
Molecular			3	
Sieves	Ce(IV)	0.05	5	
MnO ₂ (colloid)	Ce(IV)	0.09	7	
a-MnO ₂	$Bu(hpy)^{3+}$	0 050	8	
nanowires	Ku(bpy)3	0.039	0	
CaMn ₃ O ₆	Ce(IV)	0.046	9	
CaMn ₄ O ₈	Ce(IV)	0.035	9	
a-MnO ₂	$\mathbf{Ru}(\mathbf{hnv})^{3+}$	0.035	8	
nanotubes	Ku(bpy)3	0.055	0	
Mn ₂ O ₃	Ce(IV)	0.027	2	
β -MnO ₂	$\mathbf{Ru}(\mathbf{hnv})^{3+}$	0.02	8	
nanowires	Mu(opy)3	0.02	0	
Ca ₂ Mn ₃ O ₈	Ce(IV)	0.016	10	
CaMnO ₃	Ce(IV)	0.012	10	
Bulk α-MnO ₂	$Ru(bpy)_3^{3+}$	0.01	8	
PSII	Sunlight	10 ⁵ - 4×10 ⁵	11	

References:

- 1 M. M. Najafpour, S. Nayeri and B. Pashaei, Dalton Trans., 40, 2011, 9374.
- 2 M. M. Najafpour, T. Ehrenberg, M. Wiechen and P. Kurz, *Angew. Chem., Int. Ed.*, 2010, **49**, 2233.
- 3 A. Iyer, J. Del-Pilar, C. Kithongo King'ondu, E. Kissel, H. Fabian Garces, H. Huang, A. M. El-
- Sawy, P. K. Dutta and S. L. Suib, J. Phys. Chem. C, DOI: 10.1021/jp2120737.
- 4 Y. Okuno, O. Yonemitsu and Y. Chiba, Chem. Lett., 1983, 815.
- 5 M. M. Najafpour, D. Jafarian Sedigh, C. K. King'ondu and S. L. Suib, Dalton Trans., ?, ?, ?.
- 6 M. M. Najafpour, F. Rahimi, M. Amini, S. Nayeri and M. Bagherzadeh, Dalton Trans., ?, ?, ?.
- 7 M. M. Najafpour, Dalton Trans., 2011, 40, 3805
- 8 V. B. R. Boppana and F. Jiao, Chem. Commun., 2011, 47, 8973.
- 9. M. M. Najafpour, Dalton Trans., 2011, 40, 3793.
- 10 M. M. Najafpour, S. Nayeri and B. Pashaei, Dalton Trans., 2012, 41, 4799.
- 11 G.C. Dismukes, R. Brimblecombe, G. A. N. Felton, R. S. Pryadun, J. E. Sheats, L. Spiccia and G. F.

SwiegersAcc. Chem. Res., 2009, 42, 1935.