Assembly and Properties of Transition Metal Coordination Polymers Based on Semi-rigid Bis-pyridyl-bis-amide Ligand: Effect of Polycarboxylates on the Dimensionality

Xiu-Li Wang*, Bao Mu, Hong-Yan Lin, Song Yang, Guo-Cheng Liu, Ai-Xiang Tian and Ju-Wen Zhang

^a Department of Chemistry, Bohai University, Jinzhou, 121000, P.R. China

ELECTRONIC SUPPLEMENTARY INFORMATION

Complex 1				
Co(1)–O(1)	2.0491(11)	Co(1)–O(2W)	2.0564(11)	
Co(1)–O(1W)	2.1055(11)	Co(1)–O(3W)	2.1407(11)	
Co(1)–N(3)	2.1911(12)	Co(1)–N(1)	2.1969(12)	
O(1)-Co(1)-O(2W)	176.28(4)	O(1)-Co(1)-O(3W)	92.33(4)	
O(1)-Co(1)-O(1W)	92.45(4)	O(2W)-Co(1)-O(3W)	85.68(4)	
O(2W)-Co(1)-O(1W)	89.47(4)	O(1W)-Co(1)-O(3W)	175.06(4)	
O(1)-Co(1)-N(3)	93.18(5)	O(2W)–Co(1)–N(1)	88.76(4)	
O(2W)–Co(1)–N(3)	90.03(4)	O(1W)–Co(1)–N(1)	91.60(4)	
O(1W)–Co(1)–N(3)	89.17(4)	O(3W)–Co(1)–N(1)	87.31(4)	
O(3W)–Co(1)–N(3)	91.82(4)	N(3)-Co(1)-N(1)	178.56(4)	
O(1)-Co(1)-N(1)	88.00(5)			
	Comple	ex 2		
Co(1)–O(3)#1	2.0391(19)	Co(1)–N(2)	2.178(2)	
Co(1)–N(1)	2.112(2)	Co(1)–O(2W)	2.2123(19)	
Co(1)–O(1)	2.140(2)	Co(1)–O(2)	2.166(2)	
O(3)#1-Co(1)-O(1)	159.38(8)	N(1)-Co(1)-O(2W)	89.18(8)	
N(1)-Co(1)-O(1)	103.22(8)	O(1)-Co(1)-O(2W)	90.18(8)	
O(3)#1-Co(1)-O(2)	98.35(8)	O(2)-Co(1)-O(2W)	83.21(8)	
N(1)-Co(1)-O(2)	162.33(9)	N(2)-Co(1)-O(2W)	177.34(8)	
O(1)–Co(1)–O(2)	61.05(7)	O(3)#1-Co(1)-N(2)	89.58(8)	
N(1)-Co(1)-N(2)	89.93(9)	O(1)-Co(1)-N(2)	92.47(8)	
O(2)–Co(1)–N(2)	98.34(8)	O(3)#1-Co(1)-O(2W)	88.05(7)	
O(3)#1-Co(1)-N(1)	97.30(9)			
Symmetry transformations used to generate equivalent atoms: $\#1 - x$, $y + 1/2$, $-z + 1/2$				
Complex 3				
Co(1)–O(5)	1.9715(18)	Co(1)–O(3)#2	2.0857(17)	

Table S1. Selected Bond Distances (Å) and Angles (deg) for Complexes 1–7

Co(1)–O(2)#1	1.9828(17)	Co(1)–O(4)#2	2.290(2)	
Co(1)–N(1)	2.0688(19)	Co(2)–O(1)	2.1021(17)	
Co(2)–O(4W)#3	2.059(3)	Co(2)–O(1)#3	2.1021(17)	
Co(2)–O(4W)	2.059(3)	Co(2)–O(3W)#3	2.148(2)	
Co(2)–O(3W)	2.148(2)	O(5)-Co(1)-O(2)#1	104.73(7)	
O(5)–Co(1)–N(1)	96.96(7)	O(5)-Co(1)-O(4)#2	161.61(8)	
O(2)#1-Co(1)-N(1)	114.92(7)	O(2)#1-Co(1)-O(4)#2	85.58(7)	
O(5)–Co(1)–O(3)#2	102.75(7)	N(1)-Co(1)-O(4)#2	92.21(8)	
O(2)#1–Co(1)–O(3)#2	125.94(7)	O(3)#2-Co(1)-O(4)#2	59.20(8)	
N(1)-Co(1)-O(3)#2	106.70(7)	O(4W)#3-Co(2)-O(4W)	180.00	
O(4W)#3-Co(2)-O(1)	93.55(8)	O(4W)#3-Co(2)-O(1)#3	86.45(8)	
O(4W)-Co(2)-O(1)	93.55(8)	O(4W)-Co(2)-O(1)#3	93.55(8)	
O(1)-Co(2)-O(1)#3	180.00	O(4W)#3-Co(2)-O(3W)	91.71(9)	
O(4W)#3-Co(2)-O(3W)#3	91.71(9)	O(4W)-Co(2)-O(3W)	91.71(9)	
O(4W)-Co(2)-O(3W)#3	91.71(19)	O(1)-Co(2)-O(3W)	95.28(8)	
O(1)-Co(2)-O(3W)#3	95.29(8)	O(1)#3-Co(2)-O(3W)	84.71(8)	
O(1)#3-Co(2)-O(3W)#3	95.29(8)	O(3W)#3-Co(2)-O(3W)	180.00	
Symmetry transformations used to generate equivalent atoms: #1 x + 1, y, z; #2 x + $1/2$, –				
y + 1/2, z - 1/2; #3 - x - 2, -y, -z				

Complex 4

Co(1)–O(1)	1.906(3)	Co(1)-O(3B)#2	1.985(5)
Co(1)-O(3A)#1	1.985(5)	Co(1)-N(1)#3	2.044(2)
Co(1)–N(1)	2.044(2)	O(1)-Co(1)-N(1)	116.29(8)
O(1)-Co(1)-O(3A)#1	106.53(2)	O(3B)#1-Co(1)-N(1)#3	93.20(17)
O(1)-Co(1)-O(3B)#1	106.53(2)	O(3B)#2-Co(1)-N(1)#3	119.76(18)
O(1)-Co(1)-O(3B)#2	106.53(2)	O(1)-Co(1)-N(1)#3	116.29(8)
N(1)#3-Co(1)-N(1)	102.86(9)	O(3B)#1-Co(1)-N(1)	119.76(18)
O(3B)#1-Co(1)-O(3B)#2	32.72(2)	O(3B)#2-Co(1)-N(1)	93.20(17)

Symmetry transformations used to generate equivalent atoms: #1 x - 1/2, y, - z + 1/2; #2 x - 1/2, - y + 3/2, - z + 1/2; #3 x, - y + 3/2, z

Complex 5

1.9202(14)	Cu(1)–O(3)#1	1.9671(13)
2.0433(17)	Cu(1)–N(4)#2	2.0667(16)
2.4375(16)	O(1)-Cu(1)-O(3)#1	167.56(7)
92.21(7)	O(3)#1–Cu(1)–N(1)	89.17(6)
89.33(6)	O(3)#1-Cu(1)-N(4)#2	87.39(6)
170.71(7)	O(1)-Cu(1)-O(6)#3	105.72(6)
86.26(6)	N(1)-Cu(1)-O(6)#3	98.97(6)
89.42(6)		
	1.9202(14) 2.0433(17) 2.4375(16) 92.21(7) 89.33(6) 170.71(7) 86.26(6) 89.42(6)	1.9202(14) $Cu(1)-O(3)#1$ $2.0433(17)$ $Cu(1)-N(4)#2$ $2.4375(16)$ $O(1)-Cu(1)-O(3)#1$ $92.21(7)$ $O(3)#1-Cu(1)-N(1)$ $89.33(6)$ $O(3)#1-Cu(1)-N(4)#2$ $170.71(7)$ $O(1)-Cu(1)-O(6)#3$ $86.26(6)$ $N(1)-Cu(1)-O(6)#3$ $89.42(6)$ $V(1)-V(1)-V(1)-V(1)$

Symmetry transformations used to generate equivalent atoms: #1 x + 1, y, z; #2 x - 1, - y

+ 1/2, z + 1/2; #3 – x + 2, y – 1/2, – z + 3/2

Complex 6			
Cu(1)–O(1)	1.9430(15)	Cu(1)–O(1)#1	1.9430(15)

Supplementary Material (ESI) for Dalton Transactions
This journal is © The Royal Society of Chemistry

Cu(1)–N(3)	2.049(2)	Cu(1)–N(3)#1	2.049(2)
Cu(2)–O(3)	1.9531(19)	Cu(2)–O(3)#2	1.9531(19)
Cu(2)–N(1)#2	2.004(2)	O(1)-Cu(1)-O(1)#1	180.00
O(1)-Cu(1)-N(3)	90.73(7)	O(1)#1-Cu(1)-N(3)	89.28(7)
O(1)-Cu(1)-N(3)#1	89.28(7)	O(1)#1-Cu(1)-N(3)#1	90.73(7)
N(3)-Cu(1)-N(3)#1	180.00	O(3)-Cu(2)-O(3)#2	180.00
O(3)-Cu(2)-N(1)#2	93.41(8)	O(3)#2-Cu(2)-N(1)#2	86.59(8)
O(3)–Cu(2)–N(1)	86.59(9)	O(3)#2-Cu(2)-N(1)	93.41(8)
N(1)#2-Cu(2)-N(1)	180.00		
Symmetry transformations used	to generate equ	uivalent atoms: $\#1 - x + 1/2, -$	y + 1/2, -z;
#2 - x + 1/2, -y - 1/2, -z			
	Comple	ex 7	
Cu(1)–O(18)	1.929(5)	Cu(1)–O(8)#1	1.947(6)
Cu(1)–N(2)	2.038(8)	Cu(1)–N(8)	2.062(9)
Cu(1)–O(4W)	2.249(7)	Cu(1)–O(11)	2.758(8)
Cu(2)–O(5)	1.909(5)	Cu(2)–O(7)	1.926(5)
Cu(2)–N(3)#2	2.047(9)	Cu(2)–N(6)	2.051(8)
Cu(2)–O(3W)	2.455(8)	O(18)-Cu(1)-O(8)#1	174.2(3)
O(18)–Cu(1)–N(2)	90.6(3)	O(8)#1-Cu(1)-N(2)	90.1(3)
O(18)–Cu(1)–N(8)	88.9(3)	O(8)#1-Cu(1)-N(8)	91.6(3)
N(2)-Cu(1)-N(8)	167.5(4)	O(18)–Cu(1)–O(4W)	92.0(2)
O(8)#1-Cu(1)-O(4W)	82.3(3)	N(2)-Cu(1)-O(4W)	94.4(3)
N(8)-Cu(1)-O(4W)	98.1(3)	O(5)-Cu(2)-O(7)	172.3(3)
O(5)-Cu(2)-N(3)#2	87.5(3)	O(7)-Cu(2)-N(3)#2	93.0(3)
O(5)-Cu(2)-N(6)	90.2(3)	O(7)-Cu(2)-N(6)	88.1(3)
N(3)#2-Cu(2)-N(6)	170.8(4)		
Symmetry transformations used to generate equivalent atoms: #1 x, y, z + 1; #2 x + 2, y +			

^{1,} z

Table S2. Hydrogen–Bonding Geometry (Å, $^{\circ}$) for Complexes 1 and 6.

D–H…A	D–H	Н…А	D…A	D–H…		
	Compl	ex 1				
$O(1W)-H(1WA)\cdots O(6)^{a}$	0.85	1.91	2.7548(16)	173		
N(4)-H(4A)O(4W)	0.86	2.19	2.9860(17)	154		
O(4W)–H4WA····O3 ^b	0.85	1.93	2.7468(13)	160		
	Comple	ex 6				
$N(2)-H(2A)\cdots O(2)^{a}$	0.86	1.93	2.774(3)	167		
$N(4)-H(4B)\cdots O(6)^{b}$	0.86	2.08	2.928(3)	169		
Complex 7						
O(3)–H(3A)····O(14) ^a	0.82	1.801	2.570	155.46		
O(19)–H(19A)····O(16) ^b	0.82	1.831	2.588	152.9		
Symmetry code for 1: (a) x_{1} , $-y + 1$, $-1/2 + z$; (b) $-x + 3/2$, $-y + 3/2$, $-z + 1$; for 6: (a) $-$						
1/2 + x, $-1/2 + y$, z; (b) x, $1 + y$, z; for 7: (a) x + 1, y, z; (b) x - 1, y, z.						

Fig. S2. The 3D supramolecular framework based on the 2D supramolecular networks by hydrogen bonding interactions of complex **1**. The hydrogen atoms are omitted for clarity.

Fig. S3. (a) The 1D chain based on the Co^{II} ions and the 1,2-BDC carboxylate ligand along b direction. (H atoms are omitted for clarity). (b) 1D chain based on the Co^{II} ions and the **3-bpcd** ligands along c direction in complex **2**. (c) The 3D framework of **2** based on the 2D layer and the 1,2-BDC carboxylate.

(b)

(c)

Fig. S4. (a) The 1D chain based on the Co^{II} ions and the NPH ligands. (b) 1D chain based on the

Co^{II} ions and the **3-bpcd** ligands in complex **4**. (H atoms are omitted for clarity).

(b)

Fig. S5. The 1D Cu-1,3-BDC chain of complex 5.

Fig. S6. (a) The 1D chain based on the Cu^{II} ions and the 1,2-BDC ligands. (b) 1D chains based on

the Cu^{II} ions and the **3-bpcd** ligands in complex **6**. (H atoms are omitted for clarity).

(a)

(b)

Fig. S7. (a) The 1D chain based on the Cu^{II} ions and the 1,3,5-HBTC ligands. (b) 1D chain based on the Cu^{II} ions and the **3-bpcd** ligands in complex **7**. (H atoms are omitted for clarity).

Figure S8. The TG curves of complexes 1–7.

Fig. S9. Cyclic voltammogram of 2–CPE (+900 to –800mV) in 1 M H₂SO₄ solution for complex 2.

Fig. S10. Cyclic voltammogram of **7**–CPE (+400 to –400mV) in 1 M H₂SO₄ solution for complex **7**. Scan rate: 100 mVs⁻¹.

