Two novel POM-pillared metal-organic frameworks

Xiao-Yuan Wu^{a,b}, Qi-Kai Zhang^{a,b}, Xiao-Fei Kuang^{a,b}, Wen-bin Yang^{a,b}, Rong-Min Yu^{a,b}, Can-Zhong Lu^{a,b}*

a. State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese

Academy of Sciences, Fuzhou, Fujian, 35002, China.

b. Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 35002, China.

E-mail: czlu@ fjirsm.ac.cn; Fax: (+86)- 591-83714946; Tel: (+86)- 591-83705794

Identification code	1	2
Empirical formula	$C_{36}H_{40}Cu_5N_{30}O_{48}SiW_{12}$	$C_{72}H_{62}Cu_9Mo_{24}N_{60}O_{87}P_2$
Formula weight	4212.97	6096.18
Crystal system	Triclinic	Triclinic
space group	<i>P</i> -1	<i>P</i> -1
<i>a</i> (Å)	12.195(10)	13.4510(17)
<i>b</i> (Å)	13.489(11)	14.8499(19)
<i>c</i> (Å)	14.276(12)	21.992(2)
α (°)	104.904(8)	99.752(5)
β (°)	111.632(6)	92.350(2)
γ (°)	105.607(2)	116.253(4)
Volume (Å ³)	1929(3)	3849.2(8)
Ζ	1	1
Calculated density (Mg/m ³)	3.627	2.630
Absorption coefficient (mm ⁻¹)	19.287	3.229
<i>F</i> (000)	1897	2909
Crystal size	$0.20\times0.20\times0.20~mm$	$0.20\times0.15\times0.15~mm$
θ range for data collection (°)	2.46 to 27.44	2.00 to 27.48
Limiting indices	-12<=h<=15	-17<=h<=17
	-17<=k<=15	-19<= <i>k</i> <=14
	-18<= <i>l</i> <=18	-26<= <i>l</i> <=28
Reflections collected / unique	14945 / 8720	30390 / 17348
Data / restraints / parameters	8720 / 120 / 634	17348 / 48 / 1198
Goodness-of-fit on F ²	1.248	1.085
Final <i>R</i> indices $[I > 2\sigma(I)]$	$R_1 = 0.0940$	$R_1 = 0.0680$
	$wR_2 = 0.1730$	$wR_2 = 0.1774$
R indices (all data)	$R_1 = 0.1111$	$R_1 = 0.0913$
	$wR_2 = 0.1804$	$wR_2 = 0.2050$

Bond	Distant (Å)	Bond	Distant (Å)	Bond	Distant (Å)	Bond	Distant (Å)
Si(1)-O(1)	1.59(3)	W(2)-O(11A)	2.00(3)	W(4)-O(17)	1.95(2)	W(6)-O(4)	2.33(3)
Si(1)-O(3)	1.61(3)	W(2)-O(4)#1	2.33(3)	W(4)-O(2)#1	2.28(3)	W(6)-O(3)#1	2.46(3)
Si(1)-O(2)	1.70(3)	W(2)-O(1)	2.48(3)	W(4)-O(1)	2.42(3)	Cu(1)-N(2)	1.97(2)
Si(1)-O(4)	1.71(3)	W(3)-O(13)	1.66(2)	W(5)-O(18)	1.70(2)	Cu(1)-N(25)#2	1.98(2)
W(1)-O(7)	1.70(2)	W(3)-O(11B)#1	1.73(3)	W(5)-O(5)	1.85(2)	Cu(1)-N(29)	1.99(2)
W(1)-O(12)#1	1.84(2)	W(3)-O(15B)	1.84(4)	W(5)-O(17)	1.87(2)	Cu(1)-N(26)	2.02(2)
W(1)-O(6)	1.86(2)	W(3)-O(14)	1.91(2)	W(5)-O(19)	1.89(2)	Cu(1)-O(7)	2.44(2)
W(1)-O(8)	1.87(2)	W(3)-O(12)	1.93(2)	W(5)-O(6)	1.91(2)	Cu(2)-N(13)#3	1.97(2)
W(1)-O(9)	1.89(2)	W(3)-O(11A)#1	2.07(4)	W(5)-O(3)#1	2.33(3)	Cu(2)-OW1	1.98(2)
W(1)-O(2)	2.37(3)	W(3)-O(15A)	2.11(3)	W(5)-O(1)	2.38(3)	Cu(2)-N(12)	1.99(2)
W(1)-O(3)#1	2.44(3)	W(3)-O(4)	2.39(3)	W(6)-O(20)	1.70(2)	Cu(2)-N(22)	2.02(2)
W(2)-O(21)	1.66(2)	W(3)-O(2)#1	2.45(3)	W(6)-O(15B)	1.88(4)	Cu(2)-N(23)	2.27(2)
W(2)-O(22)	1.87(2)	W(4)-O(16)	1.66(2)	W(6)-O(10)#1	1.89(2)	Cu(3)-N(7)	2.01(2)
W(2)-O(10)	1.87(2)	W(4)-O(14)	1.89(2)	W(6)-O(9)	1.91(2)	Cu(3)-N(7)#4	2.01(2)
W(2)-O(11B)	1.90(3)	W(4)-O(8)#1	1.90(2)	W(6)-O(19)	1.92(2)	Cu(3)-N(4)	2.01(2)

 Table S2. Selected Bond Distances for Compound 1

Symmetry transformations used to generate equivalent atoms:

#1 -x-1,-y,-z-1; #2 -x,-y,-z; #3 -x,-y+1,-z; #4 -x-1,-y-1,-z

Bond	Distant (Å)	Bond	Distant (Å)	Bond	Distant (Å)	Bond	Distant (Å)
P(1)-O(4)	1.43(1)	Mo(3)-O(2)#1	2.48(1)	Mo(7)-O(25)	2.46(1)	Mo(11)-O(24)	2.51(1)
P(1)-O(2)	1.54(1)	Mo(4)-O(19)	1.66(1)	Mo(8)-O(35)	1.65(1)	Mo(12)-O(44)	1.66(1)
P(1)-O(1)	1.57(1)	Mo(4)-O(18)	1.83(1)	Mo(8)-O(32)	1.83(1)	Mo(12)-O(39)	1.84(1)
P(1)-O(3)	1.58(1)	Mo(4)-O(20)	1.86(1)	Mo(8)-O(34)	1.86(1)	Mo(12)-O(36)	1.87(1)
P(2)-O(26)	1.50(1)	Mo(4)-O(7B)	1.81(2)	Mo(8)-O(33)	1.99(1)	Mo(12)-O(42)	1.93(1)
P(2)-O(25)	1.51(1)	Mo(4)-O(17)	1.95(1)	Mo(8)-O(31)	1.99(1)	Mo(12)-O(29)	2.00(1)
P(2)-O(24)	1.56(1)	Mo(4)-O(7A)	2.18(2)	Mo(8)-O(24)#2	2.42(1)	Mo(12)-O(23)#2	2.40(1)
P(2)-O(23)	1.59(1)	Mo(4)-O(1)#1	2.48(1)	Mo(8)-O(26)	2.52(1)	Cu(1)-N(48)	1.93(1)
Mo(1)-O(5)	1.66(1)	Mo(4)-O(3)	2.49(1)	Mo(9)-O(38)	1.66(1)	Cu(1)-N(51)	2.08(1)
Mo(1)-O(7B)	1.87(2)	Mo(5)-O(21)	1.65(1)	Mo(9)-O(30)	1.81(1)	Cu(2)-N(57)#4	1.98(1)
Mo(1)-O(8)	1.81(1)	Mo(5)-O(6)	1.82(1)	Mo(9)-O(37)	1.85(1)	Cu(2)-N(36)	1.98(1)
Mo(1)-O(9)	1.92(1)	Mo(5)-O(16)	1.83(1)	Mo(9)-O(36)	1.94(1)	Cu(2)-N(56)	1.98(1)
Mo(1)-O(7A)	1.90(1)	Mo(5)-O(18)	1.99(1)	Mo(9)-O(32)	2.03(1)	Cu(2)-N(62)	2.02(1)
Mo(1)-O(6)	2.01(1)	Mo(5)-O(12)	2.00(1)	Mo(9)-O(24)#2	2.47(1)	Cu(2)-OW1	2.37(1)
Mo(1)-O(1)#1	2.40(1)	Mo(5)-O(1)#1	2.49(1)	Mo(9)-O(25)	2.48(1)	Cu(3)-N(13)#5	1.97(1)
Mo(2)-O(10)	1.66(1)	Mo(6)-O(22)	1.65(1)	Mo(10)-O(41)	1.63(1)	Cu(3)-N(12)	2.01(1)
Mo(2)-O(12)	1.81(1)	Mo(6)-O(14)	1.84(1)	Mo(10)-O(27)	1.82(1)	Cu(3)-N(18)	2.01(1)
Mo(2)-O(13)	1.84(1)	Mo(6)-O(9)#1	1.87(1)	Mo(10)-O(40)	1.84(1)	Cu(3)-OW2	2.02(1)
Mo(2)-O(11)#1	1.97(1)	Mo(6)-O(20)	1.96(1)	Mo(10)-O(34)	1.96(1)	Cu(3)-N(1)	2.24(1)
Mo(2)-O(8)#1	2.02(1)	Mo(6)-O(13)	1.98(1)	Mo(10)-O(39)	1.98(1)	Cu(4)-N(34)	2.03(1)
Mo(2)-O(2)	2.42(1)	Mo(6)-O(3)	2.37(1)	Mo(10)-O(23)#2	2.44(1)	Cu(4)-N(26)	2.03(1)
Mo(3)-O(15)	1.66(1)	Mo(7)-O(28)	1.65(1)	Mo(11)-O(43)	1.64(1)	Cu(4)-N(29)	2.04(1)
Mo(3)-O(11)	1.83(1)	Mo(7)-O(31)#2	1.82(1)	Mo(11)-O(33)#2	1.83(1)	Cu(4)-N(40)	2.06(1)
Mo(3)-O(17)	1.85(1)	Mo(7)-O(29)	1.82(1)	Mo(11)-O(42)	1.86(1)	Cu(4)-N(46)	2.21(1)
Mo(3)-O(16)#1	1.97(1)	Mo(7)-O(27)#2	1.96(1)	Mo(11)-O(37)#2	1.95(1)	Cu(5)-N(4)#6	1.99(1)
Mo(3)-O(14)	1.98(1)	Mo(7)-O(30)	2.01(1)	Mo(11)-O(40)	1.96(1)	Cu(5)-N(24)	1.99(1)
Mo(3)-O(3)	2.47(1)	Mo(7)-O(26)#2	2.46(1)	Mo(11)-O(23)#2	2.48(1)	Cu(5)-N(3)	1.99(1)
Cu(5)-N(7)#6	2.05(1)						

Table S3. Selected	Bond Distances	for Com	pound 2
--------------------	----------------	---------	---------

Symmetry transformations used to generate equivalent atoms:

#1 -*x*,-*y*+1,-*z* #2 -*x*+2,-*y*,-*z*+1 #3 -*x*+1,-*y*,-*z* #4 -*x*,-*y*,-*z* #5 -*x*+1,-*y*+1,-*z*+1 #6 -*x*+2,-*y*+1,-*z*+1

Fig. S1 The coordination environment of copper atoms in compound 1.

The hydrogen atoms and lattice water molecules are omitted for clarity. (A: -x, -y, -z; B: 1-x, 1-y, -z; C: -1-x, -1-y, -z)

Fig. S2 The 3D framework of compound **1**. The hydrogen atoms and lattice water molecules are omitted for clarity.

Fig. 3 The coordination environment of copper atoms in compound **2**. The hydrogen atoms are omitted for clarity. (A: 1-x, 2-y, 1-z; B: 2-x, 2-y, 1-z; C: -x, 1-y, -z; D: 1-x, 1-y, -z)

Fig. S4 The 3D framework of compound **2**. The hydrogen atoms and lattice water molecules are omitted for clarity.

Fig. S5 TGA curves of 1 and MS curves of the decomposed products for 1.

Fig. S6 XRD patterns for **1** (a) calculated on the basis of the structure determined by single-crystal XRD, (b) taken at room temperature, (c) taken after heating at 240 °C for one hour, (d) taken after heating at 260 °C for one hour, (e) taken after heating at 300 °C for one hour, (f) taken after heating at 320 °C for one hour, (g) taken after heating at 340 °C for one hour.

Fig. S7 TGA curves of 2 and MS curves of the decomposed products for 2.

Fig. S8 XRD patterns for **2** (a) calculated on the basis of the structure determined by single-crystal XRD, (b) taken at room temperature, (c) taken after heating at 240 °C for one hour, (d) taken after heating at 260 °C for one hour, (e) taken after heating at 300 °C for one hour, (f) taken after heating at 320 °C for one hour.

Fig. S9 Plots of the product $\chi_M T$ vs T (\circ) and χ_M vs T (Δ) for compound 1 and 2.