Comparative Study of Different Methods for the Preparation of Tetraamidato- and Tetracarboxylatodiruthenium Compounds.

Structural and Magnetic Characterization

Patricia Delgado,^a Rodrigo González-Prieto,^a Reyes Jiménez-Aparicio,^{a,*} Josefina Perles,^a José L. Priego,^{a,*} and Rosario M. Torres.^b

^aDepartamento de Química Inorgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria, E-28040 Madrid, Spain. E-mail: <u>reyesja@quim.ucm.es</u>; <u>bermejo@quim.ucm.es</u>

^bCentro de Asistencia a la Investigación de Rayos X. Facultad de Ciencias Químicas. Universidad Complutense de Madrid. Ciudad Universitaria, 28040 Madrid, Spain.

Electronic Supplementary Information:

Representation of the structure of complexes 3, 5 and 6

Figure S1. Left: thermal-ellipsoid representation of the structure of $[Ru_2Cl(\mu-NHOCC_6H_4-p-Me)_4]$ (3), (50% probability ellipsoids). Right: drawing of a zig-zag $[Ru_2Cl(\mu-NHOCC_6H_4-p-Me)_4]_n$ chain. Hydrogen atoms are omitted for clarity.

Figure S2 Left: thermal-ellipsoid representation of the structure of $[Ru_2Cl(\mu-O_2CC_6H_4-m-Me)_4]$ (5), (50% probability ellipsoids). Right: drawing of a zig-zag $[Ru_2Cl(\mu-O_2CC_6H_4-m-Me)_4]_{\infty}$ chain. Hydrogen atoms are omitted for clarity.

Figure S3. Left: thermal-ellipsoid representation of the structure of $[Ru_2Cl(\mu-O_2CC_6H_4-p-Me)_4]$ (6), (50% probability ellipsoids). Right: drawing of a zig-zag $[Ru_2Cl(\mu-O_2CC_6H_4-p-Me)_4]_{\infty}$ chain. Hydrogen atoms are omitted for clarity.

Experimental and calculated curves for complexes 1 and 3-6

Figure S4. Temperature dependence of the molar susceptibility χ_M (circles) and $\mu_{eff.}$ (triangles) for complex **3**; solid lines are the product of a least-squares fit to the model indicated in the text.

Figure S5. Temperature dependence of the molar susceptibility χ_M (circles) and $\mu_{eff.}$ (triangles) for complex **4**; solid lines are the product of a least-squares fit to the model indicated in the text.

Figure S6. Temperature dependence of the molar susceptibility χ_M (circles) and $\mu_{eff.}$ (triangles) for complex **5**; solid lines are the product of a least-squares fit to the model indicated in the text.

Figure S7. Temperature dependence of the molar susceptibility χ_M (circles) and $\mu_{eff.}$ (triangles) for complex **6**; solid lines are the product of a least-squares fit to the model indicated in the text.

Figure S8. Temperature dependence of the molar susceptibility χ_M (circles) and $\mu_{eff.}$ (triangles) for complex **1**. Fit were made considering a mononuclear paramagnetic impurity with S=1/2; solid lines are the product of a least-squares fit to the model indicated in the text.

Experimental and calculated diffractogram of complexes 1 - 6

Figure S9. Red: Experimental data of X-ray powder diffractometry of compound 1. Black: Diffractogram simulated from single crystal X-ray determination

Figure S10. Red: Experimental data of X-ray powder diffractometry of compound 2. Black: Diffractogram simulated from single crystal X-ray determination

Figure S11. Red: Experimental data of X-ray powder diffractometry of compound 3. Black: Diffractogram simulated from single crystal X-ray determination

Figure S12. Red: Experimental data of X-ray powder diffractometry of compound 4. Black: Diffractogram simulated from single crystal X-ray determination

Figure S13. Red: Experimental data of X-ray powder diffractometry of compound 5. Black: Diffractogram simulated from single crystal X-ray determination

Figure S14. Red: Experimental data of X-ray powder diffractometry of compound 6. Black: Diffractogram simulated from single crystal X-ray determination