SUPPLIMENTARY DATA

Aerial oxygenation chemistry of *4*-TBC catalyzed by chloro bridged dinuclear copper(II) complexes of pyrazole based tridentate ligands – a relevance of Methane Monooxygenase(*p*MMO) behaviour

Ishita Banerjee,^a Kalyan Kumar Das,^aPabitra Narayan Samanta,^a Rodica Ababei,^{b,c,d} Marguerite Kalisz,^{b,c} Adrien Girard,^{b,c} Corine Mathonière,^d Yang-Guang Li,^e M. Nethaji,^f Rodolphe Clérac,^{b,c,*} and Mahammad Ali^{a,*}

^a Department of Chemistry, Jadavpur University, Kolkata 700 032, India; ^b CNRS, UPR 8641, Centre de Recherche Paul Pascal (CRPP), Equipe "Matériaux Moléculaires Magnétiques", 115
avenue du Dr. Albert Schweitzer, Pessac, F-33600, France; ^c Université de Bordeaux, UPR 8641, Pessac, F-33600, France; ^d CNRS, UPR 9048, Institut de Chimie de la Matière Condensée de Bordeaux (ICMCB), 87 avenue du Dr. Albert Schweitzer, Pessac, F- 33608, France; ^e Key Laboratory of Polyoxometalate Science of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P.R. China; ^f Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India. **Fig. S1.** Cyclic voltammogram of **2** (1 mmol/L) in MeCN under pure N_2 atmosphere with a sweep rate of 50 mV s⁻¹ at 25 0 C with 0.1 M tetrabutylammonium perchlorate as supporting electrolyte. The CV for **2** is supplied as supporting information.

Fig S2(a) . TOF-MS-ES⁺ spectrum of different species observed in the organic products.

Fig S2(b). Mass Spectra of different species observed in reaction mixtures.

 $\rightarrow + Na^+$ (ES⁺-Mass)

5

6

[Cu(L^H)Cl(H₂O)]⁺

(ES⁺-Mass)

440.9940

[Cu(L^H)Cl(MeOH)]⁺

(ES⁺-Mass)

[Cu(L^H)Cl(4-TBC-H)] + K⁺

(FAB-Mass)

(FAB-Mass

Fig. S3. Pairs of SOMOs for the triplet state of complexes 1-4.

Fig. S4. Plot of k_i vs. [1] concentration for the oxidation of 4-TBCH₂. Conditions are: [4-TBCH₂] = 1.5 mM; $T = 25^{\circ}$ C.

Fig. S5. Dependence of k_i on [Li⁺] for the oxidation of 4-TBCH₂ catalyzed by complex 1 in MeOH. Conditions are: [C] =0.50 mM; [4-TBCH₂] = 1.5 mM; Temp =25° C.

SUP Figure 6. Time resolved spectra for the reaction between $[Cu_2(L^H)_2(Cl)_2]^{2+}$ and 3,5-di-*tert* - butylcatechol in MeCN. Conditions: [C] = 0.50 mM, $[3,5-\text{DTBCH}_2] = 1.0 \text{ mM}$, $T = 32 \, {}^{0}\text{C}$.

[4-TBC]/M	$10^5 k_{\rm i}/{\rm Ms}^{-1}$ (1)	$10^5 k_{\rm i}/{\rm Ms}^{-1}$ (2)	$10^{5}k_{\rm i}/{\rm Ms}^{-1}$ (3)
0.001	5.75e-005	1.01e-005	1.61e-005
0.0015	9.61e-005		
0.0025	1.41e-004	2.27e-005	3.43e-005
0.003	1.53e-004	2.56e-005	4.19e-005
0.004	1.93e-004	3.04e-005	4.79e-005
0.005	2.49e-004	3.65e-005	5.51e-005
0.007	2.91e-004	4.02e-005	6.57e-005
0.01	3.65e-004	4.61e-005	7.91e-005
0.02	5.21e-004	5.76e-005	9.71e-005
0.03	6.28e-004	5.97e-005	1.11e-004
0.04	6.63e-004	6.19e-005	1.17e-004
0.05	6.87e-004	6.24e-005	1.28e-004

Table S1. Kinetic data for the catalytic oxidation of 4-TBC in MeOH. Conditions:[C] = 0.50 mM, temp. 25° C

10 ⁴ x [Cu(L ^H)Cl ⁺] /M	$10^5 k_{\rm i} / {\rm Ms}^{-1}$
1.00	2.58
3.00	6.21
5.00	9.61
5.00	5.01
7.00	14.08
	-
10.0	18.71

Table S2. Dependence of k_i on complex concentration for the catalytic oxidation of 4-TBC in MeOH. Conditions: [4-TBC] = 1.5 mM, temp. 25° C

Table S3. Dependence of k_i on Cl⁻ ion concentration in MeOH for the catalytic oxidation of 4-TBC in MeOH. Conditions: [1] = 0.5 mM, [4-TBC] = 1.5 mM, temp. 25° C.

[LiCl]/M	$10^5 k_{\rm i} / {\rm Ms}^{-1}$
0.00	9.61
0.01	6.70
0.03	3.30
0.05	3.00
0.07	2.50
0.1	1.34

Table S4. Details of DFT calculations on different probable intermediates along with their stabilization energies.

Species	Energy (au) optimized at B3LYP/LanL2DZ/6-31+G(d)
$[Cu_2(\mu-CI)_2(L^H)_2]^{2+}$	-2447.73013419
[Cu(L^H)Cl] ⁺ (la)	-1223.90435423
[Cu (L ^H) Cl(H ₂ O)] ⁺ (Ib)	-1300.36132313
[Cu (L ^H) Cl(MeOH)] ⁺ l(c)	-1339.66554927
HO OH (II)	-540.00618563
[Cu(L ^H)(Cl)(4-TBC)] ⁺ (III)	-1763.51839105
[Cu(L ^H)(4- HTBC)] ⁺ (IIIa)	-1747.59640434
A H	-1747.93806595

15

Cl	-14.99863340
H ₂ O	-76.43522994
CH₃OH	-115.74060876
HCI	-15.53952509

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is C The Royal Society of Chemistry 2012