Electronic Supplementary Information

Multifunctional magnetic calcium phosphate nanoparticles for targeted platin delivery

Smruti R. Rout,^{*a*} Birendra Behera, ^{*b*} Tapas K. Maiti^{*b*} and Sasmita Mohapatra^{**a*}

^aDepartment of Chemistry, National Institute of Technology, Rourkela, India-769008, E-mail: sasmitam@nitrkl.ac.in ^bDepartment of Biotechnology, Indian Institute of Technology, Kharagpur, India-721302

Figure S1

Figure S1 SEM image of CoFe₂O4@ACP-CDDP-FA-RITC nanoparticles

Figure S2

Figure S2 EDX spectrum of CoFe2O4@ACP-CDDP-FA-RITC nanoparticles

Figure S3 Variation of hydrodynamic size after each step of modification

Figure S4 Change in hydrodynamic size of CoFe2O4@ACP-CDDP-FA-RITC with respect to time

Figure S5 Zeta potential variation of CoFe₂O4@ACP-CDDP-FA with respect to pH

Figure S6 FTIR spectra after each step of conjugation

FigureS7 XPS survey spectrum of CoFe₂O₄@ACP-CDDP-FA. High resolution scans of (b) C1s, (c) O1s, (d) N1s, (e) Ca2p, (f) Pt4f

Figure S8 Nitrogen adsorption-desorption isotherm and the corresponding pore size distribution (inset) of as synthesized $CoFe_2O_4$ nanoparticles

Figure S9 Cytotoxicity assay of nanoparticles on (a) HeLa and (b) L929 cells. Cells were treated with different concentrations of nanoparticles for 72 h and cell viability was measured by MTT assay

Figure S10 Change in UV-Visible spectrum of $Pt(NH_3)_2Cl_2$ after reacting with 2 equivalents of AgNO₃

Figure S11 CDDP loading (%) on -COOH functionalized CoFe₂O₄ @ACP nanoparticles

Calculation of drug loading capacity

The drug loading capacity was calculated as per our previously reported paper [1]. First, COOH functionalized particles were conjugated with $Pt(H_2O)_2Cl_2$ as described in the experimental section and then particles were separated from the aqueous suspension using magnetic separator (Invitrogen). The obtained drug-loaded CoFe₂O₄@ACP nanoparticles were incubated at 60 °C in vacuum overnight and were weighted. Drug concentration in supernatant was analyzed by the ultraviolet absorption ($\lambda_{max} = 295$ nm), with reference to a calibration curve on a UV-Vis spectrophotometer. The measurements were performed in triplicate. Drug-loading content and encapsulation efficiency were obtained by eqs 1 and 2, respectively [2].

Drug-loading content (%) = $\frac{\text{Weight of the drug in nanoparticles}}{\text{weight of the nanoparticles}} \times 100$ $= \frac{0.013}{0.120} \times 100 = 10.8\%$ Encapsulation efficiency (%) = $\frac{\text{Weight of the drug in nanoparticles}}{\text{Weight of the feeding drug}} \times 100$

$$=\frac{0.013}{0.017} \times 100 = 76.4\%$$