ELECTRONIC SUPPORTING INFORMATION

Table S1. Crystal Data. trans-[PtCl_2(EtCN)_2] trans-1 trans-2 4 5 empirical formula C ₆ H ₁₀ Cl ₄ N ₂ Pt C ₁₂ H ₁₂ Cl ₄ N ₄ O ₄ Pt C ₁₂ H ₁₆ Cl ₄ N ₄ O ₆ Pt C ₁₂ H ₁₅ C ₁₄ N ₄ O ₂ Pt C ₁₈ H ₂₂ Cl ₄ N ₆ O ₄ Pt fw 447.05 613.15 649.17 584.17 723.31 temp (K) 100(2) 100(2) 100(2) 100(2) 100(2)							
	trans-[PtCl ₂ (EtCN) ₂]	trans-1	trans-2	4	5		
empirical formula	$C_6H_{10}Cl_4N_2Pt$	$C_{12}H_{12}Cl_4N_4O_4Pt$	$C_{12}H_{16}Cl_4N_4O_6Pt$	$C_{12}H_{15}C_{14}N_4O_2Pt$	$C_{18}H_{22}Cl_4N_6O_4Pt$		
fw	447.05	613.15	649.17	584.17	723.31		
temp (K)	100(2)	100(2)	100(2)	100(2)	100(2)		
$\lambda(\text{\AA})$	0.71073	0.71073	0.71073	0.71073	0.71073		
cryst syst	Monoclinic	Monoclinic	Monoclinic	Monoclinic	Triclinic		
space group	$P2_1/c$	$P2_1/n$	$P2_1/c$	$P2_1/c$	$P \overline{1}$		
<i>a</i> (Å)	5.9682(2)	9.6189(2) Å	5.8898(2)	15.0633(8)	6.59770(10)		
<i>b</i> (Å)	8.8714(5)	8.7091(2) Å	18.3306(7)	8.5041(4)	7.9991(2)		
<i>c</i> (Å)	11.9058(6)	11.1019(3)	8.9748(3)	14.8670(5)	11.9255(2)		
α (deg)	90	90	90	90	73.9520(10)		
β (deg)	103.931(3)	114.029(2)	98.3540(10)	104.787(3)	82.1570(10)		
$\gamma(\text{deg})$	90	90	90	90	75.8260(10)		
$V(\text{\AA}^3)$	611.83(5)	849.43(4)	958.67(6)	1841.39(14)	584.84(2)		
Z	2	2	2	4	1		
$ ho_{ m calc}({ m Mg/m}^3)$	2.427	2.397	2.235	2.107	2.054		
μ (Mo K α) (mm ⁻¹)	12.300	8.916	7.913	8.212	6.494		
No. reflns.	11915	27697	21370	31328	15751		
Unique reflns.	1570	2477	3256	3235	4457		
$GOOF(F^2)$	1.097	1.038	1.293	1.134	1.034		
R _{int}	0.0347	0.0351	0.0373	0.0608	0.0342		
$R1^a (I \ge 2\sigma)$	0.0221	0.0162	0.0273	0.0445	0.0206		
$wR2^{b} (I \ge 2\sigma)$	0.0521	0.0345	0.0556	0.1015	0.0408		

•

Table S1 Crustel Data

	6	8	10	11
empirical formula	$C_{12}H_{16}Cl_4N_4O_2Pt$	$C_{18}H_{22}Cl_3N_6O_5Pt$	$C_9H_{17}Cl_4N_3O_5Pt$	$C_{13}H_{20}Cl_4N_4O_3Pt$
fw	585.18	703.86	584.15	617.22
temp (K)	100(2)	100(2)	100(2)	100(2)
$\lambda(\text{\AA})$	0.71073	0.71073	0.71073	0.71073
cryst syst	Trigonal	Monoclinic	Triclinic	triclinic
space group	P3 ₂	$P2_1/c$	P 1	P 1
<i>a</i> (Å)	7.8439(3)	15.9646(7)	6.7248(7)	6.59850(10)
<i>b</i> (Å)	7.8439(3)	11.9025(5)	8.0570(5)	7.95740(10)
<i>c</i> (Å)	25.4480(7)	13.2546(6)	16.8733(13)	19.0913(4)
α (deg)	90	90	79.899(6)	87.0580(10)
β (deg)	90	93.4980(10)	81.282(7)	86.2180(10)
$\gamma(\text{deg})$	120	90	72.243(6)	74.5110(10)
$V(\text{\AA}^3)$	1355.96(8)	2513.93(19)	852.47(12)	963.32(3)
Z	3	4	2	2
$ ho_{\rm calc}({\rm Mg/m^3})$	2.150	1.860	2.276	2.128
μ (Mo K α) (mm ⁻¹)	8.364	5.940	8.879	7.858
No. reflns.	8574	19613	16984	18919
Unique reflns.	2958	5771	5811	5860
$GOOF(F^2)$	1.050	1.067	1.051	1.081
R _{int}	0.0442	0.0355	0.0309	0.0436
$R1^{a} (I \ge 2\sigma)$	0.0230	0.0319	0.0274	0.0349
$wR2^{b} (I \ge 2\sigma)$	0.0506	0.0730	0.0475	0.0603

Table S2. Crystal Data.

^{*a*} $RI = \Sigma ||F_{o}| - |F_{c}||/\Sigma |F_{o}|$. ^{*b*} wR2 = $[\Sigma [w(F_{o}^{2} - F_{c}^{2})^{2}]/\Sigma [w(F_{o}^{2})^{2}]]^{1/2}$.

The structure of *trans*-[PtCl₄(EtCN)₂]

Despite the fact that the starting *trans*-[PtCl₄(EtCN)₂] complex is widely used in metal-mediated syntheses, its X-ray structure is yet unknown. We succeeded in obtaining crystals of this compound, which were characterized by X-ray diffraction (**Figure S1**), indicating that the Pt– $N\equiv C$ group is linear, and the Pt(1)–N(1) bond lengths [1.966(3) Å] correspond to that of *cis*- and *trans*-[PtCl₂(EtCN)₂] [1.94(2) Å and 1.96(2) Å, respectively]; Pt–Cl distances [2.3172(9) Å, 2.3221(9) Å] are slightly longer that of *cis*- and *trans*-[PtCl₂(EtCN)₂] (2.263(5) Å and 2.285(5) Å, correspondingly).^{S1}

Figure S1. Molecular structure of *trans*-[PtCl₄(EtCN)₂] with the atomic numbering scheme. Thermal ellipsoids are given at the 50% probability level. Selected bond lengths (Å) and angles (°): Pt(1)–N(1) 1.966(3), Pt(1)–Cl(1) 2.3221(9), Pt(1)–Cl(2) 2.3172(9), N(1)–C(1) 1.127(5), N(1)–Pt(1)–Cl(2) 89.21(10), Cl(2)–Pt(1)–Cl(1) 89.77(3), C(1)–N(1)–Pt(1) 176.0(3).

The structures of *trans*-1, *trans*-2, 6, 10, and 11

Figure S2. Molecular structure of *trans*-1 with the atomic numbering scheme. Thermal ellipsoids are given at the 50% probability level. Selected bond lengths (Å) and angles (°): Pt(1)–N(1) 2.0856(19), Pt(1)–Cl(1) 2.3112(5), Pt(1)–Cl(2) 2.3153(6), N(1)–C(1) 1.433(3), N(2)–C(6) 1.462(3), N(1)–Pt(1)–Cl(1) 92.55(6), N(1)–Pt(1)–Cl(2) 83.11(6), Cl(1)–Pt(1)–Cl(2) 90.41(2).

Figure S3.Molecular structure of *trans-2* with the atomic numbering scheme. Thermal ellipsoids are given at the 50% probability level. Selected bond lengths (Å) and angles (°): Pt(1)-N(1) 2.082(3), Pt(1)-Cl(1) 2.3087(7), Pt(1)-Cl(2) 2.3085(7), N(1)-C(1) 1.436(4), N(2)-C(3) 1.469(4), N(1)-Pt(1)-Cl(1) 95.09(8), N(1)-Pt(1)-Cl(2) 89.29(8), Cl(1)-Pt(1)-Cl(2) 89.15(3)

Figure S4. Molecular structure of **6** with the atomic numbering scheme. Thermal ellipsoids are given at the 50% probability level. Selected bond lengths (Å) and angles (°): Pt(1)–N(1) 2.009(5), Pt(1)–N(2) 2.005(5), Pt(1)–Cl(1) 2.3202(15), Pt(1)–Cl(2) 2.3205(15), Pt(1)–Cl(3) 2.3297(14), Pt(1)–Cl(4) 2.3064(15), N(1)–C(1) 1.303(7), N(2)–C(10) 1.128(8), N(3)–C(1) 1.340(8), N(2)–Pt(1)–N(1) 176.2(2), Cl(1)–Pt(1)–Cl(2) 178.93(6), Cl(4)–Pt(1)–Cl(3) 178.28(6).

Figure S5. Molecular structure of **10** with the atomic numbering scheme. Thermal ellipsoids are given at the 50% probability level. Selected bond lengths (Å) and angles (°): Pt(1)–N(1) 2.031(2), Pt(1)–N(2) 2.114(2), Pt(1)–Cl(1) 2.3227(7), Pt(1)–Cl(2) 2.3200(8), Pt(1)–Cl(3) 2.3276(7), Pt(1)–Cl(4) 2.3095(8), O(1)–C(1) 1.311(4), N(1)–Pt(1)–N(2) 90.28(9), Cl(2)–Pt(1)–Cl(1) 88.69(3), Cl(4)–Pt(1)–Cl(3) 178.53(3), C(1)–N(1)–Pt(1) 130.7(2), C(4)–N(2)–Pt(1) 119.80(18), N(1)–C(1)–O(1)118.4(3), N(1)–C(1)–C(2) 122.4(3).

Figure S6. Molecular structure of **11** with the atomic numbering scheme. Thermal ellipsoids are given at the 50% probability level. Selected bond lengths (Å) and angles (°): Pt(1)–N(1) 2.017(3), Pt(1)–N(2) 2.034(3), Pt(1)–Cl(1) 2.3249(10), Pt(1)–Cl(2) 2.3089(11), Pt(1)–Cl(3) 2.3118(10), Pt(1)–Cl(4) 2.3217(11), N(1)–C(1) 1.299(5), N(2)–C(10) 1.291(5), N(3)–C(1) 1.343(5), O(3)–C(10) 1.334(5), N(1)–Pt(1)–N(2) 172.49(14), N(1)–Pt(1)–Cl(2) 87.01(10), N(2)–Pt(1)–Cl(2) 94.25(10).

Substitution of the nitrile in *trans*-[PtCl₄(EtCN)₂] with *o*-, *m*-, and *p*-NAs

1:1 ratio. A ratio between *cis*- and *trans*-isomers (2:3, 1:3, and 1:2 for **1**, **2**, and **3**, correspondingly) was determined by ¹H NMR integration. All *cis*-[PtCl₄(NA)₂] (*cis*-**1**–**3**) in the mixtures of isomers were completely isomerized to the corresponding *trans*-isomers (*trans*-**1**–**3**) in the solid state (1d, 50 °C) or in solution (1d, acetone, 40 °C); the isomerization was monitored by TLC, ¹H and ¹³C{¹H} NMR.

1:2 ratio. A ratio between *cis*- and *trans*-isomers (3:5, 1:3, and 2:3 for **1**, **2**, and **3**, correspondingly) was determined by ¹H NMR integration. All *cis*-[PtCl₄(NA)₂] (*cis*-**1**-**3**) were completely isomerized to the corresponding *trans*-isomers (*trans*-**1**-**3**) in the solid state (1d, 50 °C) or in solution (1d, acetone, 40 °C); the isomerization was monitored by TLC, ¹H and ${}^{13}C{}^{1}H$ NMR.

All obtained compounds were characterized by ESI-MS, IR, ¹H and ¹³C{¹H} NMR spectroscopic techniques and also by C, H, and N elemental analyses. The substitution products *cis*- and *trans*-**1**–**3** have different R_f for the corresponding *cis*- and *trans*-isomer in the each pair,

which allows the distinguishing these species. *Cis/trans*-**1**–**3** exhibit satisfactory elemental analyses; in the ES Γ -MS the typical ions are $[M - H]^-$. The IR spectra display a medium intensity bands at 3212–3168 cm⁻¹, which can be attributed to the N–H stretching vibrations. In the ¹H NMR spectra NH resonances appears as a broad singlet at 8.73–8.79 for *cis*- and *trans*-**2**,**3** and at 8.99 and 9.23 ppm for *cis*- and *trans*-**1**, such low-field signal position for the latter can be explained by formation of intramolecular hydrogen bonding with *o*-NO₂ group.

Complexes *trans*-1 and *trans*-2 were also characterized by X-ray diffraction (**Figures S2–S3**); both complexes exhibit a slightly distorted octahedral geometry with the two *trans*-*N*-donor ligands.

cis/trans-[PtCl₄(*N*H₂C₆H₄NO₂-*o*)₂] (*cis/trans*-1). Found: C, 23.39; H, 1.86; N, 9.03 (Calcd. for $C_{12}H_{12}N_4Cl_4O_4Pt$: C, 23.51; H, 1.97; N, 9.14). EST-MS, *m/z*: 610.9212; calcd for $[M - H]^-$ 610.9134. IR spectrum in KBr (selected bands, cm⁻¹): 3390 m and 3181 m *v*(N–H), 3083 w *v*(C–H), 1617 s and 1487 s *v*(C=C_{Ar}), 1526 s *v*_{asymm}(N=O), 1345 s *v*_{symm}(N=O), 752 w δ (C–H_{Ar}). TLC: $R_f = 0.43$ (*cis*-1) and 0.60 (*trans*-1) (Me₂CO:CHCl₃ = 1:20, v/v). ¹H NMR spectrum in (CD₃)₂CO, δ : (*cis*-1): 8.99 (s, br, 4H, NH₂), 8.26 (d, 8.2 Hz, 2H), 7.97 (d, 8.1 Hz, 2H) (*o*- and *m*-H from Ar), 7.83 (t, 8.1 Hz, 2H), 7.67 (t, 8.1 Hz, 2H) (*o*- and *m*-H from Ar); (*trans*-1): 9.23 (s, br, 4H, NH₂), 8.49 (d, 4.0 Hz, 2H), 8.20 (d, 4.0 Hz, 2H) (*o*- and *m*-H from Ar), 8.05 (t, 4.0 Hz, 2H), 7.90 (t, 4.0 Hz, 2H) (*m*- and *p*-H from Ar). ¹³C {¹H} NMR spectrum in (CD₃)₂CO, δ : (*cis*-1): 142.9, 134.1 (C_{ipso}); 132.9, 129.0, 128.8, 125.3 (C_{Ar}); (*trans*-1): 142.6, 134.5 (C_{ipso}); 133.5, 128.9, 128.8, 125.2 (C_{Ar}).

cis/trans-[PtCl₄(NH₂C₆H₄NO₂-*m*)₂] (*cis/trans*-2). Found: C, 23.47; H, 1.89; N, 9.10 (Calcd. for C₁₂H₁₂N₄Cl₄O₄Pt: C, 23.51; H, 1.97; N, 9.14). ESI⁻-MS, *m/z*: 610.9197; calcd for $[M - H]^-$ 610.9134. IR spectrum in KBr (selected bands, cm⁻¹): 3194 m and 3168 m *v*(N–H), 3091 w *v*(C–H), 1630 s *v*(C=C_{Ar}), 1534 s *v*_{asymm}(N=O), 1356 s *v*_{symm}(N=O), 749 w δ (C–H_{Ar}). TLC: R_f= 0.40 (*cis*-2) and 0.61 (*trans*-2) (Me₂CO:CHCl₃ = 1:20, v/v). ¹H NMR spectrum in (CD₃)₂CO, δ : (*cis*-2): 8.75 (s, br, 4H, NH₂), 8.54 (s, 2H, *o*-H from Ar), 8.23 (d, 8.0 Hz, 2H), 7.88 (d, 8.0 Hz, 2H) (*o*- and *p*-H from Ar), 7.70 (t, 2H, 8.0 Hz, *m*-H from Ar); (*trans*-2): 8.76 (s, br, 4H, NH₂), 8.49 (s, 2H, *o*-H from Ar), 8.25 (d, 4.0 Hz, 2H), 7.99 (d, 4.0 Hz, 2H) (*o*- and *p*-H from Ar). ¹³C {¹H} spectrum in (CD₃)₂CO, δ : (*cis*-2): 148.8, 142.0

(C_{ipso}); 131.8, 123.5, 123.3, 120.4 (C_{Ar}); (*trans*-2): 144.3, 141.9 (C_{ipso}); 134.1, 129.7, 124.8, 122.4 (C_{Ar}).

cis/trans-[PtCl₄(NH₂C₆H₄NO₂-*p*)₂] (*cis/trans*-3). Found: C, 23.43; H, 1.92; N, 9.08 (Calcd. for C₁₂H₁₂N₄Cl₄O₄Pt: C, 23.51; H, 1.97; N, 9.14). ESΓ-MS, *m/z*: 610.9236; calcd for [M – H]⁻ 610.9134. IR spectrum in KBr (selected bands, cm⁻¹): 3212 m and 3181 m and 3112 w v(N–H), 3028 w v(C–H), 1621 s v(C=C_{Ar}), 1528 s v_{asymm} (N=O), 1352 s v_{symm} (N=O), 753 w δ (C– H_{Ar}). TLC: R_f = 0.41 (*cis*-3) and 0.60 (*trans*-3) (Me₂CO:CHCl₃ = 1:20, v/v). ¹H NMR spectrum ((CD₃)₂CO, δ): (*cis*-3): 8.85 (s, 4H, NH₂), 8.40 (d, 8.5 Hz, 4H), 7.94 (d, 8.5 Hz, 4H) (H from Ar); (*trans*-3): 8.79 (s, br, 4H, NH₂), 8.27 (d, 4.4 Hz, 4H), 7.82 (d, 4.4 Hz, 4H) (H from Ar). ¹³C{¹H} spectrum ((CD₃)₂CO, δ): (*cis*-3): 146.8, 146.6 (C_{ipso}); 126.6, 125.3 (C_{Ar}); (*trans*-3): 147.2, 146.2 (C_{ipso}), 126.5, 124.2 (C_{Ar}).

S1 P. Svensson, K. Lövqvist, V.Yu. Kukushkin, Å. Oskarsson, *Acta Chem. Scand.*, 1995, 49, 72–75.