

Figure SF1.-Ortep representation of complex **7**. Hydrogen atoms have been omitted for the sake of clarity. The thermal ellipsoids are drawn at 50% of probability.

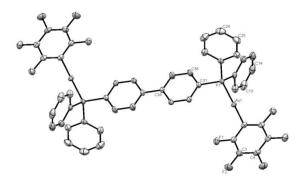


Figure SF2.-Ortep representation of complex **8**. Hydrogen atoms have been omitted for the sake of clarity. The thermal ellipsoids are drawn at 50% of probability.

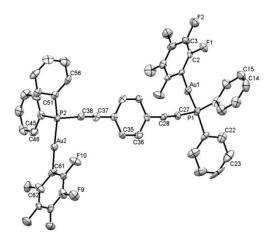


Figure SF3.-Ortep representation of complex **12**. Hydrogen atoms have been omitted for the sake of clarity. The thermal ellipsoids are drawn at 50% of probability.

Description of the π - π interactions

Compound 7: distances between centroids of rings 1 and 2 (see figure 1 in the text) and those between centroids of rings 3 and 4 are the same, 3.914 Å. Distance between centroids of rings 2 and 3 is 3.564 Å. The distances between the centroids of rings 1 and 4 to the planes formed by rings 2 and 3, respectively, are the same, 3.533 Å. That of the centroid of ring 2 to the plane formed by ring 3 is 3.397 Å. Displacement angles are 20.6°, between rings 1 and 2, 3 and 4 and 22.1° between rings 2-3.

Compound 8: distances between centroids of rings 1 and 2 is 3.677 Å, that between centroids of rings 2 and 3 is 4.195 Å. Distance between centroids of rings 1 and 3 and the plane formed by ring 2 are 3.509 and 3.364 Å. The displacement plane between rings 1 and 2 is 17.33° and 36.36° between 2 and 3.

Compound 12: The distances between centroids of rings 1-2 and 2-3 (see figure 3 in the text in which three rings have been numbered) are 3.676 and 4.198 Å respectively, and the distances between the centroid of ring 1 and the plane containing ring 2 is 3.384 Å; that between the centroid of ring 3 and the plane containing ring 2 is 3.318 Å. The displacement angles are 21.03° between rings 1 and 2 and 17.7° between rings 2 and 3.

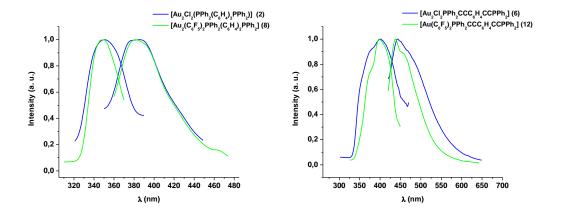


Figure SF4. Left: Normalized excitation (left) and emission (right) for chloro and pentafluorophenyl complexes with the PPh₂C₆H₄PPh₂ diphosphine in the solid state at 298 K. Right: Normalized excitation (left) and emission (right) for chloro and pentafluorophenyl complexes with the PPh₂C=CC₆H₄C=CPPh₂ diphosphine in the solid state at 298 K.

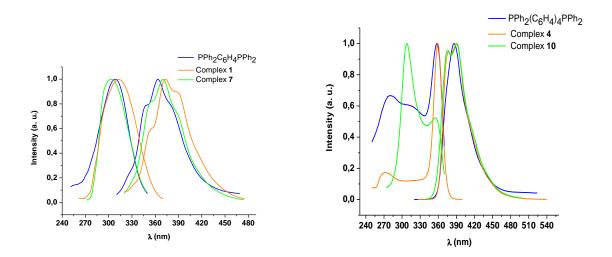


Figure SF6.-Left: Normalized excitation (left) and emission (right) spectra of the diphosphine $PPh_2C_6H_4PPh_2$ and the complexes **1** and **7** in solution at 298 K. Right: Normalized excitation (left) and emission (right) spectra of the diphosphine $PPh_2(C_6H_4)_4PPh_2$ and the complexes **4** and **10** in solution at 298 K

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is The Royal Society of Chemistry 2012

Compound	$\frac{\mathbf{UV}}{\lambda_{\max}^{a}} (\epsilon \ge 10^{-4})^{b}$	$\begin{array}{c} \textbf{RDUV} \\ \lambda_{max}{}^{a} \end{array}$
PPh ₂ (C ₆ H ₄)PPh ₂	230 (2.5) 275 (2.0)	295
$[(AuCl)_2(PPh_2(C_6H_4)PPh_2)]$ (1)	235 (3.8) 260 (2.2)	285
$[{Au(C_6F_5)}_2(PPh_2(C_6H_4)PPh_2)] (7)$	235 (5.4) 260 (3.4)	280
$PPh_2(C_6H_4)_2PPh_2$	230 (3.0) 287 (3.0)	308
$[(AuCl)_2(PPh_2(C_6H_4)_2PPh_2)]$ (2)	230 (3.7) 285 (4.2)	300
$[\{Au(C_6F_5)\}_2(PPh_2(C_6H_4)_2PPh_2)] (\textbf{8})$	230 (3.8) 285 (3.4)	300
$PPh_2(C_6H_4)_3PPh_2$	230 (1.2) 285 (2.7)	315
$[(AuCl)_2(PPh_2(C_6H_4)_3PPh_2)]$ (3)	230 (4.2) 300 (5.0)	315
$[{Au(C_6F_5)}_2(PPh_2(C_6H_4)_3PPh_2)] (9)$	235 (4.4) 300 (3.6)	315
PPh ₂ (C ₆ H ₄) ₄ PPh ₂	229 (1.0) 314 (2.2)	233 330
$[(AuCl)_2(PPh_2(C_6H_4)_4PPh_2)]$ (4)	229 (1.6) 314 (2.8)	332
$[{Au(C_6F_5)}_2(PPh_2(C_6H_4)_4PPh_2)] (10)$	230 (3.2) 315 (3.4)	330
$PPh_2(C_6H_4)_5PPh_2$	228 (1.3) 320 (3.1)	338
$[(AuCl)_2(PPh_2(C_6H_4)_5PPh_2)]$ (5)	229 (1.7) 322 (3.4)	343
$[{Au(C_6F_5)}_2(PPh_2(C_6H_4)_5PPh_2)] (11)$	230 (2.7) 322 (3.4)	342
$[(AuCl)_2(PPh_2C \equiv CC_6H_4C \equiv CPPh_2)] (6)$	232 (1.8) 294 (2.5) 341 (2.9)	315
$[{Au(C_6F_5)}_2(PPh_2C\equiv CC_6H_4C\equiv CPPh_2)]$ (12)	233 (1.6) 294 (2.2) 312 (2.5)	311

а

Table ST1. UV/vis and RDUV data for complexes 1-12

 $^a\!\lambda_{max}$ in nm,. $^b\,\epsilon$ in dm $^3\cdot mol^{-1}\cdot cm^{-1}$ in solution $5\cdot 10^{-5}~M$

Compound	298 K		77 K	
	Excitation	Emission	Excitation	Emission
PPh ₂ (C ₆ H ₄)PPh ₂	270, 370, 400 360, 400	445 470	330, 405	480
$[(AuCl)_2(PPh_2(C_6H_4)PPh_2)]$ (1)	310, 345	385	270, 330	385, 405, 425, 455, 485*
$[\{Au(C_6F_5)\}_2(PPh_2(C_6H_4)PPh_2)] (7)$	330, 350	385	280, 360	380, 400, 420*
PPh ₂ (C ₆ H ₄) ₂ PPh ₂	370	470	335 370	430 500
$[(AuCl)_2(PPh_2(C_6H_4)_2PPh_2)]$ (2)	350	385	320 350	390 465, 500, 530 [*]
$[{Au(C_6F_5)}_2(PPh_2(C_6H_4)_2PPh_2)]$ (8)	350	385	275 340	380 500
$PPh_2(C_6H_4)_3PPh_2$	370, 440 270, 405	450 490	275, 390	480
$[(AuCl)_2(PPh_2(C_6H_4)_3PPh_2)]$ (3)	275, 370, 400	385(sh), 425*	275, 355	365, 385, 425 [*] 520, 555, 600 [*]
$[{Au(C_6F_5)}_2(PPh_2(C_6H_4)_3PPh_2)] (9)$	280, 360, 400	385(sh), 420*	275, 360	365, 385, 415 [*] 515, 550, 600 [*]
$PPh_2(C_6H_4)_4PPh_2$	275, 375, 410	436, 480*	278, 385	403, 427, 453 [*]
$[(AuCl)_2(PPh_2(C_6H_4)_4PPh_2)]$ (4)	345	407	305, 380	410
$[{Au(C_6F_5)}_2(PPh_2(C_6H_4)_4PPh_2)]$ (10)	280, 370	405	280, 370	400
$PPh_2(C_6H_4)_5PPh_2$	277, 370, 400	$423, 445, 478^{*}$	277, 375	400, 423, 445, 478 [*]
$[(AuCl)_2(PPh_2(C_6H_4)_5PPh_2)]$ (5)	280, 378	427	278, 385	417, 435 [*]
$[{Au(C_6F_5)}_2(PPh_2(C_6H_4)_5PPh_2)]$ (11)	280, 380	415	280, 370	395, 420, 440*
$[(AuCl)_2(PPh_2C \equiv CC_6H_4C \equiv CPPh_2)] (6)$	402	459	311, 330, 425	512
$[{Au(C_6F_5)}_2(PPh_2C\equiv CC_6H_4C\equiv CPPh_2)]$ (12)	400	450	390 345, 410	460 484, 504, 513, 525, 539 [*]

Table TS2. Excitation and emission maxima (λ_{MAX}) in nm of complexes $\mbox{1-12}$ in the solid state

In the excitation spectra values separated by comma indicate more than one maximum of excitation for the same emission. In the emission spectra values separated by comma indicate a structured band. Values marked with correspond to the most intense bands. When two emission maxima are observed the corresponding excitation and emission are in the same line.

Compound	298 K		77 K	
	Excitation	Emission	Excitation	Emission
$PPh_2(C_6H_4)PPh_2^a$	310	365*	275, 315	450
$[(AuCl)_2(PPh_2(C_6H_4)PPh_2)]$ (1)	310	355, 370, 390 [*]	270	385, 405, 425, 455, 485*
$[{Au(C_6F_5)}_2(PPh_2(C_6H_4)PPh_2)] (7)$	305	350, 370, 390 [*]	270, 315	410
$PPh_2(C_6H_4)_2PPh_2{}^a$	250, 285	340	270, 340	485
$[(AuCl)_2(PPh_2(C_6H_4)_2PPh_2)]$ (2)	320	385	280, 320 330	370 465, 495, 525, 570 ^a
$[{Au(C_6F_5)}_2(PPh_2(C_6H_4)_2PPh_2)]$ (8)	320	385	275, 310	460, 490, 525 [*]
$PPh_2(C_6H_4)_3PPh_2{}^a$	310, 360	370 420	300, 350	445
$[(AuCl)_2(PPh_2(C_6H_4)_3PPh_2)]$ (3)	260, 340	355, 370, 390, 410, 435 [*]	275, 345	355, 375, 390, 410, 435 [*] 510, 545, 590 [*]
$[\{Au(C_6F_5)\}_2(PPh_2(C_6H_4)_3PPh_2)] (9)$	270, 340	355, 370, 390, 410, 435 [*]	275, 355	355, 375, 390, 410, 435 [*] 510, 545, 590 [*]
$PPh_2(C_6H_4)_4PPh_2$	280, 317, 360	387	270, 370	390, 436 [*]
$[(AuCl)_2(PPh_2(C_6H_4)_4PPh_2)]$ (4)	308, 355	385	330	385
$[{Au(C_6F_5)}_2(PPh_2(C_6H_4)_4PPh_2)]$ (10)	270, 360	385	295, 360	390
$PPh_2(C_6H_4)_5PPh_2$	275, 325, 367	393	277, 380	390, 415, 440 ^a
$[(AuCl)_2(PPh_2(C_6H_4)_5PPh_2)]$ (5)	270, 370	395	303, 375	390, 405, 428 [*]
$[{Au(C_6F_5)}_2(PPh_2(C_6H_4)_5PPh_2)] (11)$	275, 367	395	280, 375	390, 410, 430 [*]
$[(AuCl)_2(PPh_2C \equiv CC_6H_4C \equiv CPPh_2)] (6)$	352	378, 394, 409, 432 ^a	273, 335	490, 525 [*]
$[{Au(C_6F_5)}_2(PPh_2C\equiv CC_6H_4C\equiv CPPh_2)]$ (12)	353	377, 394, 409, 431*	326	489, 520 [*]

Table TS3. Excitation and emission maxima (λ_{MAX}) in nm of complexes 1-12 in solution

In the excitation spectra values separated by comma indicate more than one maximum of excitation for the same emission. In the emission spectra values separated by comma indicate a structured band. Values marked with ^{*} correspond to the most intense bands. When two emission maxima are observed the corresponding excitation and emission are in the same line. ^a From reference 9d cited in the manuscript.

THEORETICAL STUDIES

Figure SF9. Selection of frontier molecular orbitals incomplex 7.

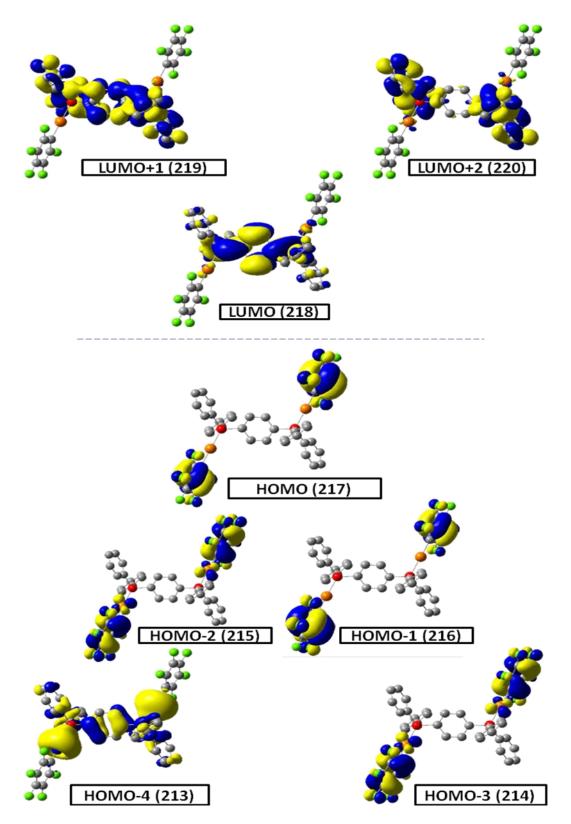
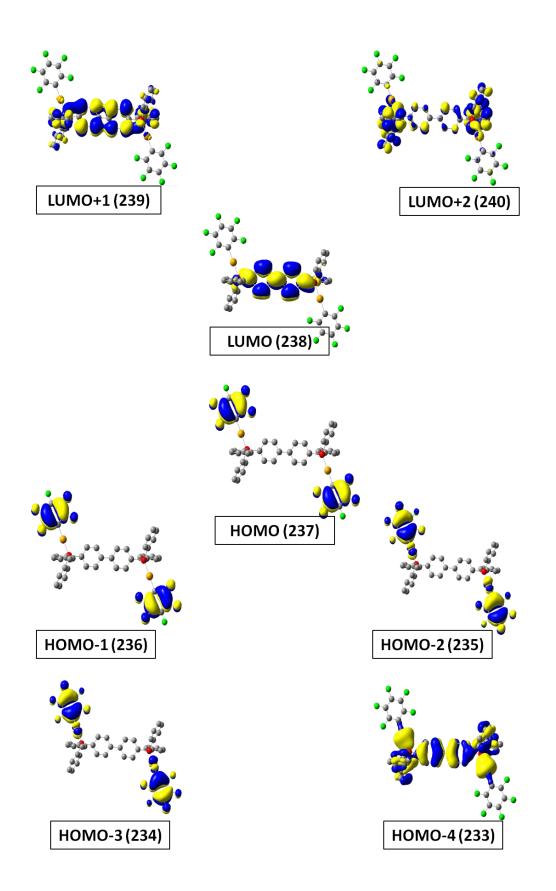



Figure SF8. Selection of frontier molecular orbitals incomplex 8.

