The formation and stability of molybdenum-antimony and tungsten-antimony ternary oxides  $Sb_2MO_6$ ,  $Sb_2M_2O_9$ ,  $Sb_2Mo_3O_{12}$  and  $Sb_4MO_9$  in the gas phase (M = Mo, W). Quantum chemical and mass spectrometric studies.

E. Berezovskaya\*, E. Milke and M. Binnewies

**Supplementary Materials** 

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is The Royal Society of Chemistry 2012

|                                      | molecular      | E <sub>tot</sub> | Etherm 298            |
|--------------------------------------|----------------|------------------|-----------------------|
| molecule                             | symmetry       | (a.u.)           | $(kJ \cdot mol^{-1})$ |
| Sb <sub>4</sub> O <sub>6</sub> (I)   | T <sub>d</sub> | -1413.450842     | 84.18                 |
| Sb <sub>4</sub> O <sub>6</sub> (II)  | $D_{2h}$       | -1413.408816     | 84.13                 |
| Mo <sub>3</sub> O <sub>9</sub> (I)   | $C_{3v}$       | -882.913202      | 118.15                |
| Mo <sub>3</sub> O <sub>9</sub> (II)  | $C_{2v}$       | -882.874712      | 117.55                |
| Mo <sub>4</sub> O <sub>12</sub> (I)  | $D_{4h}$       | -1177.237313     | 160.27                |
| Mo <sub>4</sub> O <sub>12</sub> (II) | $C_1$          | -1177.204197     | 159.15                |
| Mo <sub>5</sub> O <sub>15</sub> (I)  | Cs             | -1471.553735     | 201.98                |
| Mo <sub>5</sub> O <sub>15</sub> (II) | $C_{2v}$       | -1471.530664     | 200.63                |
| W <sub>3</sub> O <sub>9</sub> (I)    | $D_{3h}$       | -879.687121      | 117.18                |
| W <sub>3</sub> O <sub>9</sub> (II)   | C <sub>1</sub> | -879.651945      | 116.62                |
| W <sub>4</sub> O <sub>12</sub> (I)   | $C_{4v}$       | -1172.940438     | 159.00                |
| W <sub>4</sub> O <sub>12</sub> (II)  | $C_1$          | -1172.914854     | 158.31                |
| W <sub>5</sub> O <sub>15</sub> (I)   | C <sub>s</sub> | -1466.184910     | 200.43                |
| W <sub>5</sub> O <sub>15</sub> (II)  | $C_{2v}$       | -1466.173493     | 199.75                |

**Table S1** Molecular symmetries, total energies and thermal energies of the antimony,molybdenum and tungsten oxides and their isomers (def2-TZVP/RI-BP86).

**Table S2** Molecular symmetries, total energies and thermal energies of the antimony,molybdenum and tungsten ternary oxides and their isomers (def2-TZVP/RI-BP86).

|                                                       | molecular       | E <sub>tot</sub> | E <sub>therm 298</sub> |
|-------------------------------------------------------|-----------------|------------------|------------------------|
| molecule                                              | symmetry        | (a.u.)           | $(kJ \cdot mol^{-1})$  |
| Sb <sub>2</sub> MoO <sub>6</sub> (I)                  | C <sub>2v</sub> | -1001.015868     | 80.37                  |
| Sb <sub>2</sub> MoO <sub>6</sub> (II)                 | Cs              | -1000.964235     | 78.00                  |
| Sb <sub>2</sub> Mo <sub>2</sub> O <sub>9</sub> (I)    | Cs              | -1295.352819     | 122.25                 |
| Sb <sub>2</sub> Mo <sub>2</sub> O <sub>9</sub> (II)   | C <sub>1</sub>  | -1295.331719     | 122.14                 |
| Sb <sub>2</sub> Mo <sub>2</sub> O <sub>9</sub> (III)  | C <sub>1</sub>  | -1295.324831     | 121.21                 |
| $Sb_2Mo_2O_9$ (IV)                                    | C <sub>1</sub>  | -1295.323287     | 121.18                 |
| $Sb_2Mo_2O_9(V)$                                      | C <sub>1</sub>  | -1295.313122     | 120.61                 |
| Sb <sub>4</sub> MoO <sub>9</sub> (I)                  | Cs              | -1707.773869     | 125.97                 |
| Sb <sub>4</sub> MoO <sub>9</sub> (II)                 | $C_4$           | -1707.765030     | 125.07                 |
| Sb <sub>4</sub> MoO <sub>9</sub> (III)                | Cs              | -1707.753925     | 125.08                 |
| Sb <sub>4</sub> MoO <sub>9</sub> (IV)                 | Cs              | -1707.749597     | 126.03                 |
| $Sb_4MoO_9(V)$                                        | Cs              | -1707.725305     | 126.41                 |
| Sb <sub>4</sub> MoO <sub>9</sub> (VI)                 | $C_{2v}$        | -1707.718893     | 125.12                 |
| Sb <sub>2</sub> Mo <sub>3</sub> O <sub>12</sub> (I)   | Cs              | -1589.671665     | 164.08                 |
| Sb <sub>2</sub> Mo <sub>3</sub> O <sub>12</sub> (II)  | $C_1$           | -1589.668129     | 164.18                 |
| Sb <sub>2</sub> Mo <sub>3</sub> O <sub>12</sub> (III) | $C_1$           | -1589.647773     | 164.22                 |
| Sb <sub>2</sub> Mo <sub>3</sub> O <sub>12</sub> (IV)  | $C_1$           | -1589.637061     | 161.81                 |
| Sb <sub>2</sub> WO <sub>6</sub> (I)                   | $C_{2v}$        | -999.942317      | 80.01                  |
| Sb <sub>2</sub> WO <sub>6</sub> (II)                  | $C_{2v}$        | -999.902957      | 78.15                  |
| Sb <sub>2</sub> W <sub>2</sub> O <sub>9</sub> (I)     | Cs              | -1293.204927     | 121.50                 |
| Sb <sub>2</sub> W <sub>2</sub> O <sub>9</sub> (II)    | C <sub>1</sub>  | -1293.186000     | 121.53                 |
| Sb <sub>2</sub> W <sub>2</sub> O <sub>9</sub> (III)   | $C_1$           | -1293.182354     | 120.67                 |
| Sb <sub>2</sub> W <sub>2</sub> O <sub>9</sub> (IV)    | $C_1$           | -1.293.186766    | 120.82                 |
| $Sb_2W_2O_9(V)$                                       | C <sub>1</sub>  | -1.293.181353    | 120.12                 |
| Sb <sub>4</sub> WO <sub>9</sub> (I)                   | Cs              | -1706.701626     | 125.62                 |
| Sb <sub>4</sub> WO <sub>9</sub> (II)                  | $C_4$           | -1706.705806     | 125.13                 |
| Sb <sub>4</sub> WO <sub>9</sub> (III)                 | Cs              | -1706.695186     | 125.09                 |
| Sb <sub>4</sub> WO <sub>9</sub> (IV)                  | $C_1$           | -1706.677443     | 125.75                 |
| $Sb_4WO_9(V)$                                         | Cs              | -1706.653897     | 126.11                 |
| Sb <sub>4</sub> WO <sub>9</sub> (VI)                  | $C_{2v}$        | -1706.662854     | 125.26                 |

## Electronic Supplementary Material (ESI) for Dalton Transactions This journal is The Royal Society of Chemistry 2012

|                                | $S^{0}_{298}$ $(\mathbf{J} \cdot \mathbf{mol}^{-1} \cdot \mathbf{K}^{-1})$ | $S^{0}_{1000}$ $(\mathbf{J} \cdot \mathbf{mol}^{-1} \cdot \mathbf{K}^{-1})$ | $c^0_{p,T} = a$ | $+ b \cdot 10^{-3} \cdot T + c$<br>(exp. // QC) | $\cdot 10^6 \cdot T^2$ |
|--------------------------------|----------------------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------|-------------------------------------------------|------------------------|
| Molecule                       | (exp. // QC)                                                               | (exp. // QC)                                                                | а               | b                                               | С                      |
| Sb <sub>4</sub> O <sub>6</sub> | 444.2 // 461.8                                                             | 699.8 // 719.1                                                              | 217.6 // 222.6  | 14.1 // 9.0                                     | -3.5 // -3.6           |
| Mo <sub>3</sub> O <sub>9</sub> | 526.7 // 525.5                                                             | 837.3 // 820.0                                                              | 274.5 // 246.8  | 4.2 // 30.7                                     | -4.8 // -5.1           |
| $Mo_4O_{12}$                   | 654.0 // 639.4                                                             | 1074.2 // 1038.8                                                            | 371.4 // 333.1  | 5.7 // 42.3                                     | -6.5 // -6.5           |
| $Mo_5O_{15}$                   | 771.5 // 798.1                                                             | 1301.3 // 1302.7                                                            | 468.2 // 420.4  | 7.2 // 52.9                                     | -8.2 // -8.0           |
| W <sub>3</sub> O <sub>9</sub>  | 504.7 // 542.5                                                             | 845.3 // 838.2                                                              | 274.5 // 247.7  | 4.2 // 30.1                                     | -4.8 // -4.9           |
| $W_4O_{12}$                    | 605.3 // 668.1                                                             | 1028.9 // 1069.2                                                            | 372.0 // 334.1  | 5.0 // 41.4                                     | -5.9 // -6.3           |

**Table S3** Experimental<sup>23</sup> and calculated thermodynamic characteristics of the molybdenum and antimony oxides (def2-TZVP/RI-BP86).

**Table S4** Calculated thermodynamic characteristics of the molybdenum and antimony oxides(def2-TZVP/RI-BP86).

| Molecule                                             | S <sup>0</sup> 298                | $c_{p,T}^0 = a + b \cdot 10^{-3} \cdot T + c \cdot 10^6 \cdot T^2$ |      |      |
|------------------------------------------------------|-----------------------------------|--------------------------------------------------------------------|------|------|
|                                                      | $(J \cdot mol^{-1} \cdot K^{-1})$ | a                                                                  | b    | С    |
| Sb <sub>2</sub> MoO <sub>6</sub>                     | 440.9                             | 188.9                                                              | 16.8 | -3.3 |
| $Sb_2Mo_2O_9$                                        | 566.4                             | 273.3                                                              | 31.0 | -4.7 |
| $Sb_2Mo_3O_{12}(I)$                                  | 691.0                             | 360.2                                                              | 41.4 | -6.1 |
| Sb <sub>2</sub> Mo <sub>3</sub> O <sub>12</sub> (II) | 699.9                             | 360.3                                                              | 41.4 | -6.2 |
| Sb <sub>4</sub> MoO <sub>9</sub>                     | 626.3                             | 306.6                                                              | 23.0 | -4.8 |
| $Sb_2WO_6$                                           | 448.9                             | 192.8                                                              | 11.8 | -3.5 |
| $Sb_2W_2O_9$                                         | 593.0                             | 281.4                                                              | 20.5 | -5.0 |
| Sb <sub>4</sub> WO <sub>9</sub>                      | 569.2                             | 311.7                                                              | 16.4 | -5.0 |



Fig. S1 Experimental and simulated mass spectra of Sb<sub>2</sub>Mo<sub>3</sub>O<sub>12</sub>, 893 K, 70 eV.



Fig. S2 Experimental and simulated mass spectra of Sb<sub>2</sub>MoO<sub>6</sub>, 840 K, 70 eV.



**Fig. S3** Experimental and simulated mass spectra of gaseous  $Sb_2O_3$  above solid WO<sub>3</sub>, 1080 K, 70 eV.

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is O The Royal Society of Chemistry 2012



**Fig. S4** Gibbs free energy of the isomer transition of  $(MO_3)_x$  (x = 3-5, M = Mo, W) and Sb<sub>4</sub>O<sub>6</sub> (def2-TZVP/RI-BP86) at the experimental temperatures.

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is  $\ensuremath{\mathbb{O}}$  The Royal Society of Chemistry 2012



**Fig. S5** Gibbs free energy of the isomer transition of  $Sb_2MO_6$ ,  $Sb_2M_2O_9$ ,  $Sb_4MO_9$  (M = Mo, W) and  $Sb_2Mo_3O_{12}$  oxides (def2-TZVP/RI-BP86) at the experimental temperatures.

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is The Royal Society of Chemistry 2012