Azo-hydrazone tautomerism observed from UV-vis spectra by pH control and metal-ion complexation for two heterocyclic Disperse Yellow dyes

Xiao-Chun Chen, Tao Tao, Yin-Ge Wang, Yu-Xin Peng, Wei Huang, Hui-Fen Qian

**Electronic Supporting Information** 



Fig. SI1. FT–IR spectrum of HL<sub>1-H</sub>.



Fig. SI2. FT–IR spectrum of HL<sub>2-H</sub>.



Fig. SI3. FT–IR spectrum of  $Cu_2(L_{2-A})_4$ .



**Fig. SI4.** <sup>1</sup>H NMR spectrum of  $HL_{1-H}$  at the low-field range.



Fig. SI5. <sup>1</sup>H NMR spectrum of HL<sub>2-H</sub> at the low-field range.



**Fig. SI6.** <sup>1</sup>H NMR spectrum of  $HL_{1-H}$  by adding solid NaOH in its DMSO- $d^6$  solvent.



Fig. SI7. UV–vis absorption spectra of dye  $HL_{1-H}$  in methanol at room temperature. pH values are adjusted by dropping excess NaOH and then different amounts of HCl.



Fig. SI8. The simulative (black line) and experimental (red line) powder X-ray diffraction patterns for  $HL_{1-H}$ .



Fig. S19. The simulative (black line) and experimental (red line) powder X-ray diffraction patterns for  $HL_{2-H}$ .



Fig. SI10. The simulative (black line) and experimental (red line) powder X-ray diffraction patterns for  $Cu_2(L_{2-A})_4$ .



Fig. SI1. Calculated spatial representations of HOMOs and LUMOs for dyes  $HL_{1-H}$  and  $HL_{2-H}$  with the B3LYP/6–31(d) level.



Fig. SI12. ESI–TOF–MS spectrum of  $Cu_2(L_{2-A})_4$  in the negative ion mode.



Fig. SI13. <sup>13</sup>C NMR spectrum of HL<sub>1-H</sub>.



Fig. SI14. <sup>13</sup>C NMR spectrum of HL<sub>2-H</sub>.