Supporting Information for:

Evaluation of quinoline as a remote sensitiser of visible and near-infrared lanthanide luminescence in solution and solid state

David J. Lewis, Federica Moretta, Alexander T. Holloway and Zoe Pikramenou^{*}

School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.

Corresponding author:

Dr. Zoe Pikramenou, School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom. Tel: +44 (0) 121 4142290. Email: z.pikramenou@bham.ac.uk.

Figure S1: 300 MHz ¹H NMR spectrum of H_3L^a in D_2O (* = solvent).

Figure S2 : Enlargement of the aromatic region of the 300 MHz 1 H NMR spectrum of $H_{3}L$ in $D_{2}O$.

 δ / ppm

Figure S3: 75 MHz 13 C { 1 H} PENDANT NMR spectrum of $H_{3}L$ in D₂O.

Figure S4: 1 H- 13 C HSQC NMR spectrum of H_{3} L in D₂O.

Figure S5 : 300 MHz ¹H NMR spectrum of **YL** in d_6 -DMSO (* = solvent).

Figure S6: UV-Vis absorption spectrum of $1.20 \times 10^{-5} \text{ mol dm}^{-3} \text{ H}_3\text{L}$ in water.

Figure S7: Plot of relative growth in emission intensity of the 613 nm band (I / I_0) vs. equivalents of **H₃L** $\lambda_{\text{exc}} = 330$ nm.

Figure S8: Emission spectrum of GdL in methanol. $\lambda_{exc} = 330$ nm.

Figure S9: Emission spectrum of EuL in methanol. $\lambda_{exc} = 375$ nm.

Figure S10: Excitation spectrum associated with emission observed in Figure S9. **EuL** in methanol. $\lambda_{em} = 614$ nm. Inset: enlargement of red-edge, quinoline excitation band.

Figure S11: Emission spectrum of TbL in methanol. $\lambda_{exc} = 330$ nm.

Figure S12: Corrected excitation spectrum of SmL in methanol. $\lambda_{em} = 596$ nm.

Figure S13: Corrected Excitation spectrum of NdL powder. $\lambda_{em} = 1064$ nm.

Figure S14: Corrected excitation spectrum of YbL powder. $\lambda_{em} = 980$ nm.

Figure S15: Uncorrected excitation spectrum of ErL powder. $\lambda_{em} = 1520$ nm.

Figure S16: Emission spectra of NdL (---) and YbL (---) in anhydrous methanol. $\lambda_{exc} = 330$ nm.