Copper(II) fluorophosphates– Supplementary information

Edward R. Williams and Mark T. Weller

Neutron powder diffraction structural refinement

Fig. SI1 Profile fit achieved for the neutron diffraction powder pattern collected from $KCu_3(PO_3F)_2(PO_2(OH)_2)F_2$ at 120 K. Crosses represent the observed data, the upper green curve the calculated profile, the lower black curve the difference and the tick marks in-between the allowed reflection positions

Table SI2 Crystallographic data for KCu₃(PO₃F)₂(PO₂(OH)₂)F₂ at 120 K. Space group Cc. Lattice parameters a=18.9897(6) b=7.5038(2) c=7.7687(2) β =103.579(1) °

Atom	Х	у	Z	U _{iso} (Å ² *100)
K1	0.5	0.1506(15)	0.25	1.31(24)
Cu1	0.1560(1)	0.0306(4)	0.8115(4)	0.08(6)
Cu2	0.25	-0.25	1	0.09(8)
P1	0	-0.1320(9)	0.75	0.15
P2	0.3263(2)	0.1669(6)	0.9070(7)	0.15
01	0.0600(3)	-0.0208(5)	0.7079(6)	0.66(9)
O2	0.2625(2)	0.0583(5)	0.9343(6)	0.25
O3	0.3679(2)	0.2610(6)	1.0754(6)	0.21(8)
O4	0.3070(2)	0.2871(6)	0.7502(6)	0.48(9)
O14	-0.0335(3)	-0.2662(7)	0.5952(6)	1.31(11)
H13	0.0834(5)	0.2325(12)	0.4668(12)	3.56(20)

Final for parameters: $R(F^2)=0.0328$, $wR_p=0.0189$, $R_p=0.0140$, $\chi^2=8.114$

Additional crystal structure images. Compounds I-X1

Compound I - M₂Cu₃(PO₃F)₄

Fig. SI2 View along the *b*-axis for $M_2Cu_3(PO_3F)_4$. Key: blue polyhedra – Cu, grey tetrahedra – P, red sphere – O, green sphere – F, orange sphere – M^+ cation.

Compound II - K₂Cu₃(PO₃F)₄

Fig. SI3 View along the *c*-axis for $K_2Cu_3(PO_3F)_4$. Key: blue polyhedra – Cu, grey tetrahedra – P, red sphere – O, green sphere – F, orange sphere – K⁺ cation.

Compound III - Cs₂Cu₃(PO₃F)₄

Fig. SI4 View along the *a*-axis (left), *b*-axis (middle) and *c*-axis (right) for $Cs_2Cu_3(PO_3F)_4$. Key: blue polyhedra – Cu, grey tetrahedra – P, red sphere – O, green sphere – F, orange sphere – Cs^+ cation.

Compound IV - MCu₃(PO₃F)₂(PO₂(OH)₂)F₂ (M=NH₄, K, Rb)

Fig. SI5 View along the *a*-axis for $MCu_3(PO_3F)_2(PO_2(OH)_2)F_2$ (M=NH₄, K, Rb). Key: blue polyhedra – Cu, grey tetrahedra – P, red sphere – O, green sphere – F, orange sphere – M⁺ cation, pink sphere – H.

Compound V - [H₂-piperazine]Cu₂(PO₃F)₂(PO₂F₂)F

Fig. SI6 View along the *a*-axis (left), *b*-axis (middle) and *c*-axis (right) for [H₂-piperazine]Cu₂(PO₃F)₂(PO₂F₂)F. Key: blue polyhedra – Cu, grey tetrahedra – P, red sphere – O, green sphere – F, black sphere – C, pale blue sphere – N, pink sphere – H.

Compound VI - [H₂-1,4-diaminobutane]Cu₃(PO₃F)₄

Fig. SI7 View along the *a*-axis (left), *b*-axis (middle) and *c*-axis (right) for [H₂-1,4-diaminobutane]Cu₃(PO₃F)₄. Key: blue polyhedra – Cu, grey tetrahedra – P, red sphere – O, green sphere – F, black sphere – C, pale blue sphere – N, pink sphere – H.

Compound VII - [H₂-trans-1,4-diaminocyclohexane]Cu₂(PO₃F)₂F₂

Fig. SI8 View along the *b*-axis (right) $[H_2$ -*trans*-1,4-diaminocyclohexane]Cu₂(PO₃F)₂F₂. Key: blue polyhedra – Cu, grey tetrahedra – P, red sphere – O, green sphere – F, black sphere – C, pale blue sphere – N, pink sphere – H.

Compound VIII - Na₂Cu₂(P₂O₇)F

Fig. SI9 View along the *a*-axis (left), *b*-axis (middle) and *c*-axis (right) for $Na_2Cu_2(P_2O_7)F$. Key: blue polyhedra – Cu, grey tetrahedra – P, red sphere – O, green sphere – F, orange sphere – Na^+ cation.

Compound IX - $Cs_2Cu_2(PO_3F)_2F_{0.5}[P(O,OH,F)_4]_x$

Fig. SI10 View along the *a*-axis (left), *b*-axis (middle) and *c*-axis (right) for Cs₂Cu₂(PO₃F)₂F_{0.5}[P(O,OH,F)₄]_x. Key: blue polyhedra – Cu, grey tetrahedra – P, red sphere – O, green sphere – F, orange sphere – Cs⁺ cation, turquoise sphere – mixed O/OH/F.

Compound X - [Triethylamine]_xCu₃(PO₃F)₃

Fig. SI11 View along the *a*-axis (left), *b*-axis (middle) and *c*-axis (right) for $[\text{Triethylamine}]_x \text{Cu}_3(\text{PO}_3\text{F})_3$. Key: blue polyhedra – Cu, grey tetrahedra – P, red sphere – O, green sphere – F.

Compound XI - CsCu₂(PO₃F)₂F

Fig. SI11 View along the *c*-axis for CsCu₂(PO₃F)₂F. Key: blue polyhedra – Cu, grey tetrahedra – P, red sphere – O, green sphere – F, orange sphere – Cs⁺ cation.