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S1 

 

A. MAGNETIC SUSCEPTIBILITY OF A PAIR OF KRAMERS DOUBLETS 

 

A.1.  Formal properties of a Kramers doublet (KD) 

The formal properties of a Kramers doublet (KD) are given in[1]. So, a brief notice on them 

we will be given here. 

If T is the time inversion operator (T2 = -1 for a system with Kramers degeneracy), for 

any state, , in the KD a base of the doublet is given by the pair of Kramers conjugates states 

{, T}. Besides, two bases of pairs of Kramers conjugates states are related by an unitary 

transformation of the SU(2) group. Any time-even operator, when restricted to a Kramers 

doublet, results proportional to the identity and the Kramers degeneracy is only lifted by a 

time-odd operator, V, (TVT-1 = T-1VT = -V). The general matrix form of a time-odd operator, 

V, in the pair {, T} takes the form: 
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where Vd, Vn and  are real.  

By the transformation 

 ´=cosei  - sine-iT  

and, consequently, T´=sinei  + cose-iT (A.2) 
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V is diagonalized and in the {´, T´} base takes the form: 
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In summary, given a time-odd perturbation, V, it is possible to choose a base of a KD 

formed by a pair of Kramers conjugates states in which V is diagonal. 
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A.2.  Magnetic susceptibility of two Kramers doublets. Paramagnetic behavior. 

Let us consider now a system with an energy level scheme formed, in the absence of an 

applied field, by two KDs separated by an energy, . If V is a time-odd perturbation, 

according to the previous section, there are two bases of Kramers conjugate states, {, T} for 

the ground state and {, T} for the excited one, accomplishing that V is diagonal within 

each doublet. Besides, the elements of the perturbation matrix V connecting wavefunctions of 

different doublets hold:  

 
**

VVTVTVTTTVT    (A.5) 

and     **
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In conclusion, denoting:  
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where V, V, V1, V2, 1 and 2 are real, the energy matrix (including the splitting within the 

KD) is given by:  
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and the energies, up to a second-order of perturbation, are:  
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Consider now that the perturbation represents the coupling with a magnetic field 

(Zeeman interaction), and that our system could be described as isotropic from a magnetic 

point of view. Then we can write:  

 V = G∙B (A.10) 
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where B is the intensity of the applied field and G is an operator acting on the states. 

Then, defining the values of G, G, G12, as Vk = GkB, the energies of the states can be 

expanded in powers of B up to a second order and, using the Van Vleck’s formula[2], the 

paramagnetic susceptibility (a scalar in this case) is given by:  
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where N is the number of paramagnetic entities (NA for the molar susceptibility). Equation 

(A.11) can be conveniently written as:  
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with: 

    22
2

2
121

22
0 2

1

2

1
 GGCGCGGC   (A.13) 

These constants depend on the specific electronic structure of the Kramer doublets involved. 

The most general case is a little bit more complicated, since the magnetic 

susceptibility is a second range (symmetric) tensor. In consequence, when a magnetic field is 

applied in an arbitrary direction, the magnetization is not oriented, in general, parallel to the 

field. Nevertheless, since the susceptibility tensor is symmetric, there will be three directions 

mutually orthogonal to each other, (principal directions) such that when a magnetic field is 

applied parallel to one of them, the magnetization will be parallel to the field. We shall denote 

these directions as ûr, r = X, Y, Z. The susceptibility tensor expressed in this system of axes is 

diagonal and its principal values will be denoted as X, Y, Z. In order to determine the 

susceptibility it is enough to measure the magnetization with the field applied along each one 

of the principal directions. In such a case it is possible to apply the previously described 

formalism for the isotropic case, where the values of G, G, and G12, and the wavefunctions 

{, T, , T}, will depend now on the specific principal direction. The notation G(r), G(r) 

and G12(r) (r = X, Y, Z) will be used to make this dependence more explicitly and, the 

quantities Ci(r), i = 0, 1,2, are defined in a similar way as (A.13). Then, the principal values of 

the paramagnetic susceptibility are given as: 
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and, consequently, the temperature dependence of the susceptibility tensor results to be: 
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where iC
~

 (i =0, 1, 2) are symmetric tensors whose principal axes coincide with the 

susceptibility principal axes being Ci(r), (r = X, Y, Z) their principal values. 

On the other hand, if a macroscopic sample consisting of randomly oriented 

polycrystalline powder is measured, it behaves isotropically, and its susceptibility is given by:  
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and its temperature dependence is also given by (A.12), but in this case 
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Finally, we shall analyze some properties of expression (A.12), which can be more 

conveniently written as:  
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The low temperature behavior is given by 
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which only depends on the electronic properties of the ground state, whereas the high 

temperature behavior is given by:  
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On the other hand, it is interesting to compare these results with those obtained by an 

EPR experiment, in a common situation where the energy gap between the two KD, , is 

larger than the microwave frequency so that only transitions within each doublet are observed. 

The description of the EPR spectra in this case corresponds to that of the two independent 
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KD, i.e, it is equivalent to take (A.8) to a first-order. So, we can associate to each doublet an 

effective spin, S  and S  (= ½) by defining the effective giromagnetic tensors; we shall 

denote gs (s = x, y, z) and gs (s = x, y, z) the principal values of the giromagnetic 

tensors corresponding to the ground {, T} and excited {, T} states, respectively, being 

(x, y, z) and (x, y, z) the corresponding principal directions. Note that, in general, these 

directions do not need to coincide with the principal directions of the susceptibility tensor (X, 

Y, Z). 

If lr,s and lr,s are the director cosines of the r direction (r = X, Y, Z, principal 

directions of ) with respect to the axes (x, y, z) and (x, y, z), respectively, it holds:  
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and, taking into account the normalization properties of lr,s and lr,s, it is followed: 
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where we have introduced the (quadratic) average g values of the ground, g, and excited 

states, g, given by: 
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Finally 
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i.e., in the low temperature limit, the susceptibility follows a Curie law with an effective spin 

S  = ½ and with the effective g factors of the ground state.  
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A.3  A particular case: the S = 3/2 quartet. 

Frequently, the description of two Kramers doublet is given in terms of an effective spin S = 

3/2 by including a zero field term, HZFS, which accounts for the splitting among the doublet. 

The magnetic properties are determined by using the following spin-Hamiltonian: 
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with S = 3/2. ĝ stands for the g-tensor, which describes the electronic Zeeman interaction, HZe, 

and the D and  account for the zero field contribution, resulting  = 2D(1 + 32)½. The 

magnetic susceptibility of a system described by (A.25) have been calculated by several 

authors in the particular case of axial symmetry,  = 0[3-6]. Before, Ganguli et al.[7] calculated 

the principal values of the paramagnetic susceptibility tensor in a case of orthorhombic 

symmetry where the principal directions of the g-tensor coincide with the principal directions 

of the ZFS contribution (X, Y, Z). In this particular situation these directions are also the 

principal directions of the paramagnetic susceptibility tensor and the thermal evolution of the 

principal values obtained by those authors coincides with that given by (A.14) but an explicit 

dependence of the Ci(r) constants on the “true” principal g-values, gX, gY, gZ, and on the 

parameter  was obtained. In summary, for a polycrystalline, randomly oriented sample, the 

paramagnetic susceptibility is given by equation (A.12) with: 
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From the EPR point of view, if  >> h,  being the microwave frequency, the system 

can be described as two systems S = ½ (Kramers doublets) with effective g tensors[8]. Their 

principal values are given by 
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where the superscript stands for each of the two doublets. 

Usually only the signal corresponding to the transition within a doublet (that labeled 

by 1 in A.27) are observed. So, if the temperature evolution of the susceptibility is known, 

using these last equations with (A.26), the principal values of the “true” g-tensor (gX, gY, gZ) 

and the ZFS parameters (D, ) can be estimated. 

A.4.  Magnetic susceptibility of two KD. A phenomenological description of weak 

magnetic interactions. 

Let us consider now the existence of weak magnetic interactions. So, the temperature 

dependence of the paramagnetic susceptibility should depart from that predicted by equation 

(A.15). This question was studied by Carlin and Burriel[9]; these authors modified the Ganguli 

et al. expression[7] by introducing a molecular field correction[6] and asymptotic expressions 

were obtained in the high temperature regime. 

Our case is quite different. The temperature dependence shown in figure 3 of the main 

text clearly indicate that the evolution of  follows that predicted by (A.12) at temperatures 

higher than 15 K. As   200 K, in our case the ZFS contribution is higher than the exchange 

interactions. On the other hand, at low enough temperature (kBT << ) the system could be 

described as a S = ½ one and a Curie-Weiss law could account for the temperature 

dependence of magnetic susceptibility in the paramagnetic phase when exchange interactions 

are present. Then (A.24) should be modified and then: 
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As T/(T-T0)  1 for T >> T0, the expression: 
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instead of (A.12) results useful to describe the temperature evolution of the susceptibility 

when some weak exchange interactions are present. Equation (3) in the main paper 

corresponds to add to (A.29) a temperature independent contribution, 0. 
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B. MAGNETIZATION VERSUS MAGNETIC FIELD AND MAGNETIC HEAT CAPACITY IN A 

RANDOMLY ORIENTED POWDERED SAMPLE OF AN ORTHORHOMBIC S = ½ SYSTEM. 

 

Let us consider an S =1/2 system with an orthorhombic g-tensor. Its principal values will be 

denoted as gX, gY, gZ and its principal axes as (X, Y, Z). The question now is determining, 

beyond the linear region, the magnetization, of a randomly oriented powdered sample, as a 

function of the applied magnetic field at a given temperature. 

Firstly consider a single crystal and an orientation of the magnetic field given by the 

unitary vector û, (uX, uY, uZ). Defining the effective g-factor, which depends on the magnetic 

field orientation, g(û). 

     22222222
ZZYYXXZYX ugugugu,u,ugûg  , (B.1) 

the magnetic field induced splitting of the two spin level, which also depends on the magnetic 

field orientation, is given by: 

     HûgûE B , (B.2) 

where H is the intensity of the magnetic field.  

On the other hand, as a consequence of the g-tensor anisotropy, the magnetization is 

not parallel to the magnetic field. Its components in the (X, Y, Z) frame are: 

       1 2 1

2 2
B

B
B

ˆg u H
ˆ ˆM u N g u g u th X ,Y ,Z

k T  


   

  
 

. (B.3) 

Then the magnetization along a direction fixed by and unitary vector w


 is: 

         1 2 2 2 1

2 2
B

w B X X X Y Y Y Z Z Z
B

ˆg u H
ˆ ˆ ˆ ˆM u M u w N g u g u w g u w g u w th

k T


   

      
 




, (B.4) 

where (wX, wY, wZ,) are the components of w


 in the (X, Y, Z) frame. 

In particular, the component parallel to the applied field, M0(û), results to be: 

       
0

1

2 2
B

B
B

ˆg u H
ˆ ˆ ˆ ˆM u M u u N g u th

k T




 
    

 


. (B.5) 

On the other hand, the magnetic contribution to the molar heat capacity also depends 

of the magnetic field orientation, Cm(û, T/H)  and is given by a Schottky contribution: 
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
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hsec
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R
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T
,ûC

B
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B
m

 2

2

 (B.6) 

A randomly oriented powdered sample macroscopically behaves as isotropic and the 

observed magnetization is parallel to the applied field. It can be obtained by adding the former 

expression for all possible orientations taking into account that now N corresponds to the 

number of crystallite with an orientation of the magnetic field given by û; then it has to be 

substituted by Np(û), where p(û) accounts for the probability of finding a crystalline oriented 

with the applied magnetic field along û. 

By the normalization condition uX, uY, uZ are not independent and an specific 

orientation is given by the colatitude, , and azimuth, , angles. For computational 

convenience it commonly introduce the variable u = cos is introduced which, for a randomly 

oriented sample is uniformly distributed in the [-1, 1] interval;  is uniformly distributed in 

the [0, 2] interval. In practice, taking into account the symmetry (B.1) the computational task 

is performed by considering only an octant: 0  u <1 and 0   </2. 

The effective g factor, as a function of u and , results: 

      22222221 ugsingcosgu,ug ZYX    (B.7) 

and 

      
0

1
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B

g u, H
M u, N g u, th

k T

 
  

 
  

 
 (B.8) 

Then, the magnetization of a randomly oriented powdered sample is given by: 

    
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  (B.9) 

In the same way, the magnetic contribution to the molar heat capacity of a powdered 

randomly oriented sample is obtained by averaging (B.6) resulting: 
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with 
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