1

Supporting Information for

Network Formation and Photoluminescence in Copper(I)

Halide Complexes with Substituted Piperazine Ligands

Jason P. Safko,^a Jacob E. Kuperstock,^a Shannon M. McCullough,^a Andrew M. Noviello,^a

Xiaobo Li,^b James P. Killarney,^b Caitlin Murphy,^b Howard H. Patterson,^b Craig A.

Bayse,^c and Robert D. Pike^a*

^aDepartment of Chemistry, College of William and Mary, Williamsburg, VA 23187-8795.

^bDepartment of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA 23529.

^cDepartment of Chemistry, University of Maine, Orono, ME 04469-5706.

Email: rdpike@wm.edu

Contents

X-ray Powder Patterns	3
Thermogravimetric Traces	13
Luminescence Spectra	18
Plots of the cluster-based molecular orbitals of (CuI) ₂ (NMe ₃) ₂ (Y)	23

Figure S4. Experimental and calculated powder diffractograms of $(CuI)_4(2)_2$.

Figure S10. Experimental and calculated powder diffractograms of $(CuI)_2(8)_2$.

Figure S11. X-ray powder diffraction comparison of unreacted $(CuI)_2(3)$ (black trace), $(CuI)_2(3)$ stirred in 5% Py/toluene for two hours (red trace), and $(CuI)_4Py_4$ (blue trace), showing the conversion of $(CuI)_2(3)$ to $(CuI)_4Py_4$ on exposure to Py.

Figure S12. TGA for $(CuI)_4(1)_2$.

Figure S13. TGA for $(CuBr)_4(2)_2$.

Figure S14. TGA for $(CuI)_4(2)_2$.

Figure S16. TGA for $(CuI)_2(4)$.

Figure S18. TGA for $(CuI)_4(6)_4$.

Figure S20. TGA for (CuI)₂(**8**)₂.

Figure S21. Luminescence spectra of $(CuI)_4(1)_2$ at 298 and 77 K.

Figure S22. Luminescence spectra of $(CuBr)_4(2)_2$ at 298 and 77 K.

Figure S23. Luminescence spectra of $(CuI)_4(2)_2$ at 298 and 77 K.

Figure S24. Luminescence spectra of (CuI)₂(**3**) at 298 and 77 K.

Figure S25. Luminescence spectra of (CuI)₂(4) at 77 K. (Compound lacks luminescence at 298 K.)

Figure S26. Luminescence spectra of (CuI)₂(**5**) at 298 and 77 K.

Figure S27. Luminescence spectra of $(CuI)_4(6)_4$ at 298 and 77 K.

Figure S29. Luminescence spectra of $(CuI)_2(8)_2$ at 298 and 77 K.

Figure S30. Plots of the cluster-based molecular orbitals of (CuI)₂(NMe₃)₂ (**Y**).