†Electronic supplementary information (ESI)

Luminescence properties of Tb³⁺ doped CaMoO₄ nanoparticles: Annealing effect, polar medium dispersible, polymer film and core-shell formation

A. K. Parchur,^a A. I. Prasad^b, A. A. Ansari^c, S. B. Rai^a, and R. S. Ningthoujam^{*b}

^aDepartment of Physics, Banaras Hindu University, Varanasi-221005, India

^bChemistry Division, Bhabha Atomic Research Centre, Mumbai-400085, India

^cKing Abdullah Institute for Nanotechnology, King Saud University, Riyadh-11451, Saudi Arabia

*Authors to whom correspondence should be addressed Phone: +91-22-2559321 and Fax: +91-22-25505151; E-mail: rsn@barc.gov.in (R. S. Ningthoujam)

Sample	Excitation	Tb ³⁺	I_1	$ au_{l}$	χ^2
	λ (nm)	(at.%)	(%)	(µs)	χ
as-prepared	250	1	14017	877	7.336
		3	19904	709	6.729
		5	16404	570	11.487
		10	14395	519	12.409
		20	3901	423	27.433
	355	1	148	744	2.487
		3	759	705	2.538
		5	698	485	2.334
		10	1020	224	2.698
		20	6132	28	1.305
500 °C	250	1	13001	893	14.574
		3	16529	509	20.128
		5	17523	308	12.084
		10	14764	329	13.065
		20	13739	174	9.359
	355	1	201	900	2.992
		3	604	475	3.291
		5	942	291	2.711
		10	850	280	2.881
		20	1572	94	3.819
2° 006	250	1	1799	809	12.704
		3	29120	627	1.792
		5	29932	602	1.736
		10	29413	587	1.625
		20	25459	218	9.906
	355	1	388	1000	4.426
		3	8770	703	1.444
		5	8990	696	1.267
		10	8491	689	1.336
		20	9576	186	1.279

Table S1: Parameters obtained after mono-exponential equation fitting to decay data of as-prepared, 500 and 900 °C annealed samples at 250 and 355 nm excitation.

Fig. S1 XRD patterns of (a) as-prepared, (b) 500 and (c) 900 $^{\circ}$ C samples of CaMoO₄ doped with Tb³⁺. Atomic percentage of Tb³⁺ is given in figure itself. The symbol # represents the extra phase evolution.

Fig. S2 Luminescence spectra of as-prepared CaMoO₄:Tb³⁺ (Tb³⁺ = 1, 3, 5, 7, 10, 15 and 20 at.%) nanoparticles at (a) 230, (b) 240 and (c) 322 nm excitation.

Fig. S3 The typical fitting of ${}^{5}D_{4} \rightarrow {}^{7}F_{6}$ and ${}^{5}D_{4} \rightarrow {}^{7}F_{5}$ transitions of 3 at.% Tb³⁺ doped CaMoO₄ annealed at 900 °C under 355 nm excitation.

Fig. S4 The change in emission intensity of ${}^{5}D_{4} \rightarrow {}^{7}F_{6}$ transition (492 nm) of as-prepared Tb³⁺ doped CaMoO₄ nanoparticles (Tb³⁺ =1, 3, 5, 7, 10, 15 and 20 at.%) at different excitation wavelengths.

Fig. S5 Luminescence spectra of 500 °C annealed CaMoO₄:Tb³⁺ (Tb³⁺ = 1, 3, 5, 7, 10, 15 and 20 at.%) nanoparticles at (a) 230, (b) 240 and (c) 322 nm excitation. (d) The change in ${}^{5}D_{4} \rightarrow {}^{7}F_{6}$ transition intensity (492 nm) of as-prepared Tb³⁺ doped CaMoO₄ nanoparticles (Tb³⁺ =1, 3, 5, 7, 10, 15 and 20 at.%) at different excitation wavelengths.

Fig. S6 Luminescence spectra of 900 °C annealed CaMoO₄:Tb³⁺ (Tb³⁺ = 1, 3, 5, 7, 10, 15 and 20 at.%) nanoparticles at (a) 230, (b) 240 and (c) 322 nm excitation. (d) The change in ${}^{5}D_{4} \rightarrow {}^{7}F_{6}$ transition intensity (492 nm) of as-prepared Tb³⁺ doped CaMoO₄ nanoparticles (Tb³⁺ =1, 3, 5, 7, 10, 15 and 20 at.%) at different excitation wavelengths.

Fig. S7(a-f) Peak positions of ${}^{5}D_{4} \rightarrow {}^{7}F_{5}$ and ${}^{5}D_{4} \rightarrow {}^{7}F_{6}$ transitions in the case of as-prepared, 500 and 900 °C at different excitation wavelengths.

Fig. S8 FWHM values of ${}^{5}D_{4} \rightarrow {}^{7}F_{6}$ transition at 230, 240, 250, 322 and 355 nm of (a) as-prepared, (b) 500 and (c) 900 °C at different excitation wavelengths.