Supporting Information

Magnetic Properties of 1:4 Complexes of $CoCl_2$ and Pyridines Carrying Carbenes ($S_0 = 4/2$, 6/2, and 8/2) in Diluted Frozen Solution; Influence of Carbene Multiplicity on Heterospin Single-molecule Magnets.

Satoru Karasawa, Kimihiro Nakano, Jun-ichi Tanokashira, Noriko Yamamoto, Takahito Yoshizaki, and Noboru Koga^{*}

Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582 Japan.

Contents

- S1. Figure S1. UV-vis spectra changes of **D2bpy** in 2 mM MTHF solution on photolysis at 10 K.
- S2. Figure S2-1. *Mvs* irradiation time plot upon photolysis for D2py at 5 K.Figure S2-2. *Mvs* irradiation time plot upon photolysis for CoCl₂(D2py)₄ at 5 K.
- S3. Figure S3. (a) τ vs T^1 plots and (b) $\chi'_{mol}T$ vs. *T* with a 5 Oe ac field oscillating at 1000, 750, 500, 400, 250, and 100 Hz in the presence of 3 kOe dc field for a microcrystalline sample of $[CoCl_2(py)_4]$.
- S4. Figure S4. Plots of hysteresis loops at given temperature after irradiation of 1:4 mixtures of CoCl₂ and CYpy; Y = 2, 31, 3b, and 4 in frozen solution.
- S5. Figure S5. Plots of $\chi''_{mol}T$ vs *T* obtained after irradiation of a 1:4 mixture of CoCl₂ and (**CYpy**)₄; **Y** = **2**, **31**, **3b**, and **4**, in frozen MTHF solution with a 5 Oe ac field oscillating at 1000, 500, 100, 10, 5 ,and 1Hz.
- S6. Figure S6. Dc magnetization decays at given temperatures after irradiation of 1:4 mixtures (2.5 -1.5 mM) of CoCl₂ and **CYpy**; **Y** = **3l**(a), **3b**(b), and **4**(c) in frozen solution.

Table S1. List of τ values (sec) estimated by stretch exponential at given temperature.

S7. Figure S7.τ vs T¹ pots of the data collected by ac magnetic susceptibility technique and dc magnetization decay after irradiation of a 1:4 mixture of CoCl₂ and CYpy; Y = 31 (a), 3b (b), and 4 (c) in MTHF frozen solution.

Figure S1. UV-vis spectra changes of **D2bpy** in 2 mM MTHF solution on photolysis at 10 K. Arrows indicate the increasing of the carbene and decreasing of the diazo group by photolysis.

Figure S2-1. Mvs irradiation time plot upon photolysis for D2py at 5 K.

Figure S2-2. *Mvs irradiation time* plot upon photolysis for CoCl₂(**D2py**)₄ at 5 K.

Figure S3. (a) τ vs T^1 plot of the data collected by ac magnetic susceptibility. (b) $\chi'_{mol} T$ vs. T with a 5 Oe ac field oscillating at 1000 (red), 750 (blue), 500 (black), 400 (green), 250 (purple) and 100 (brown) Hz in the presence of 3 kOe dc field for a microcrystalline sample of $[CoCl_2(\mathbf{py})_4]$. The solid line indicates least squares fitting data for (a) and visual guides for (b).

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is $\ensuremath{\mathbb{C}}$ The Royal Society of Chemistry 2012

H/Oe

Figure S4. Plots of hysteresis loops at given temperature after irradiation of 1:4 mixtures of $CoCl_2$ and **CYpy**; **Y** = **2** (a), **31** (b), **3b** (b), and **4** (d) in frozen MTHF solution with a sweeping rate of 0.36 kOe/sec. Individual inset indicate *H*c vs *T* (left axis) and *M*r vs *T*(right axis) plots, respectively.

S5

Figure S5. Plots of $\chi'_{mol} T$ vs. Tobtained after irradiation of a 1:4 mixture (5.0 –1.5 mM) of CoCl₂ (CYpy)₄; **Y** = (a) **2**, (b) **31**, (c) **3b**, and (d) **4**, in frozen MTHF solution with a 5 Oe ac field oscillating at 1000 (red), 500 (blue), 100 (black), 10 (green), 5 (deep red) and 1(brown) Hz. The solid lines are visual guides.

Figure S6. Dc magnetization decays at the indicated temperatures after irradiation of 1:4 mixtures of CoCl₂ and **CYpy**; $\mathbf{Y} = 3\mathbf{l}(\mathbf{a})$, $3\mathbf{b}(\mathbf{b})$, and $4(\mathbf{c})$ in frozen solution. Solid lines show fittings by the

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is The Royal Society of Chemistry 2012

stretched exponential equation.

Table S1.

List of τ values (sec) estimated by stretch exponential at given temperature.

	$CoCl_2(C2py)_4$	$CoCl_2(C3lpy)_4$	$CoCl_2(C3bpy)_4$	$CoCl_2(C4py)_4$
1.9 K	$> 5 \times 10^{5}$	$> 5 \times 10^{5}$	_	$> 5 \times 10^{5}$
2.0 K	$> 5 \times 10^{5}$			
2.1 K	3.9×10^5	$> 5 \times 10^5$	_	$> 5 \times 10^{5}$
2.2 K	1.9×10^5	3.8×10^5	$> 5 \times 10^{5}$	$> 5 \times 10^{5}$
2.4 K	$8.0 imes 10^4$	$8.9 imes 10^4$	$> 5 \times 10^{5}$	4.7×10^{5}
2.6 K	$5.7 imes 10^4$	$2.5 imes 10^4$	1.2×10^{5}	6.0×10^{4}
2.8 K	1.2×10^4	6.0×10^{3}	1.4×10^4	8.9×10^{3}
3.0 K	2.7×10^3	1.6×10^{3}	2.3×10^3	1.6×10^{3}
3.25 K	-	4.6×10^2	3.3×10^2	-

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is $\ensuremath{\mathbb{O}}$ The Royal Society of Chemistry 2012

Figure S7. τ vs T^1 pots of the data collected by ac magnetic susceptibility technique (red circle) and dc magnetization decay (blue square) after irradiation of 1:4 mixture of CoCl₂ and **CYpy**; **Y** = **31** (a), **3b** (b), and **4** (c) in MTHF frozen solution. The solid lines are the least-squares fits of the ac data according to the Arrhenius equation.