SUPPORTING INFORMATION

Axial Chiral Metallocenes by Two-Fold Ring-Closing Metathesis

W. Buchowicz, A. Furmańczyk, J. Zachara

Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warszawa, Poland

M. Majchrzak

Faculty of Chemistry, Adam Mickiewicz University, Grunwaldzka 6, 60-780 Poznań, Poland

General Considerations

All metathesis reactions, isolation and crystallization of $\mathbf{3}$ were carried out under an inert atmosphere using standard Schlenk techniques. Complexes $\mathbf{1}$ and $\mathbf{4}^{1}$, catalysts $\mathbf{G 1}^{2}$ and G2 ${ }^{3}$ were prepared by the reported methods. Hexanes (POCH) refers to the hydrocarbon fraction with boiling range $65-80{ }^{\circ} \mathrm{C}$. EI (70 eV) mass spectra were recorded on an AMD-604 spectrometer. GC/MS analyses were performed on a Varian Saturn 2100T chromatograph, equipped with a DB-5 capillary column (30 m) and an ion trap detector. Analysis conditions: $60-300^{\circ} \mathrm{C}, 3 \mathrm{~min}$ at $60^{\circ} \mathrm{C}, 10^{\circ} \mathrm{C} / \mathrm{min}$, hold time 10 min , injector $280^{\circ} \mathrm{C}$, detector $220^{\circ} \mathrm{C}$, Ar.

Representative procedure for ring-closing metathesis reactions

A solution of catalyst $\mathbf{G 2}(0.0655 \mathrm{~g}, 0.077 \mathrm{mmol})$ in toluene $(18 \mathrm{~mL})$ was added to a solution of complex $\mathbf{1}(0.324 \mathrm{~g}, 0.628 \mathrm{mmol})$ in toluene (22 mL). The resulting solution was stirred at $40^{\circ} \mathrm{C}$ for 5 days. EI-MS of the crude reaction mixture indicated that the substrate was not completely consumed, therefore another portion of catalyst $\mathbf{G 2}$ ($0.0646 \mathrm{~g}, 0.076 \mathrm{mmol}$) in toluene (18 mL) was added and the stirring and heating at $40^{\circ} \mathrm{C}$ was continued for 5 days. The volatiles were removed under vacuum, and hexane (30 mL) was added to the solid residue. The resulting suspension was filtered through a short pad of $\mathrm{Al}_{2} \mathrm{O}_{3}$ and concentrated. Complex 3 was further purified by column chromatography (hexanes) on $\mathrm{Al}_{2} \mathrm{O}_{3}$ and crystallization at $-78{ }^{\circ} \mathrm{C}$. Yield: $0.145 \mathrm{~g}, 50 \%$, green solid. MS (EI, 70 eV) $\mathrm{m} / \mathrm{z}\left({ }^{58} \mathrm{Ni}\right) 460$ $\left(\mathrm{M}^{+}, 100 \%\right), 406\left(22, \mathrm{M}-\mathrm{C}_{4} \mathrm{H}_{6}\right), 404\left(8, \mathrm{M}-\mathrm{C}_{4} \mathrm{H}_{8}\right), 352$ (7, M-C $\mathrm{C}_{8} \mathrm{H}_{12}$). HRMS: Calc. for

[^0]$\mathrm{C}_{30} \mathrm{H}_{42}{ }^{58} \mathrm{Ni}: 460.26400$, found 460.26556. Elemental analysis: Found: C, 78.55; H, 9.1. Calc. for $\mathrm{C}_{30} \mathrm{H}_{42} \mathrm{Ni}$: C, 78.1; H, 9.2. Crystals suitable for X-ray measurements were obtained from hexanes at $-78^{\circ} \mathrm{C}$.

Under similar conditions with catalyst G1, complex $2(M=N i)$ was isolated as a green oil. MS (EI, 70 eV) m/z $\left({ }^{58} \mathrm{Ni}\right) 488\left(\mathrm{M}^{+}, 100 \%\right), 447\left(62, \mathrm{M}-\mathrm{C}_{3} \mathrm{H}_{5}\right), 406\left(45, \mathrm{M}_{-} \mathrm{C}_{6} \mathrm{H}_{10}\right), 364$ (9), 287 (69), 246 (42), 204 (60).

GC/MS data for RCM reactions of complex 4 employing catalyst G2

Sample: MMWB_1
Scan Range: 1-5256 Time Range: 3.13-35.09 min.
Operator:

Figure S1. GC/MS chromatogram of the crude reaction mixture.

Figure S2. Mass spectra of isomers of complex $2(\mathrm{M}=\mathrm{Fe})$, retention times: 27.485 and 27.704 min.

Figure S3. Mass spectra of isomers of complex 5, retention times: 27.886, 28.160 and 28.440 min.

MS Data

$\mathrm{MS}(\mathrm{EI})(\mathrm{m} / \mathrm{z})$ of $2(\mathrm{M}=\mathrm{Fe})$ at 27.485 min . (rel. int. - \%): 486.6 (63), 485.9 (100), 445.2 (13), 443.9 (55), 414.9 (19), 403.3 (23), 390 (30), 295 (29), 207.1 (35), 161.5 (73), 160.2 (68), 118.8 (22), 103.5 (15.6), 55.1 (70).

MS(EI) $(\mathrm{m} / \mathrm{z})$ of $2(\mathrm{M}=\mathrm{Fe})$ at 27.704 min . (rel. int. - \%): 487.3 (32), 486.4 (71), 445.5 (33), 428.3 (14), 403.2 (42), 399 (14), 389.3 (65), 241 (25), 207.4 (100), 203.3 (23), 175.2 (26), 105.4 (51).

MS(EI) (m/z) of 5 at 27.886 min . (rel. int. - \%): 459.6 (67), 458.4 (100), 356.9 (29), 347.6 (22), 334.3 (44), 213.4 (39), 206.7 (27), 186.4 (10), 161.4 (51), 155.6 (25), 147.4 (43), 115.7 (46), 56.1 (25).

MS(EI) (m/z) of 5 at 28.160 min . (rel. int. - \%): 459.5 (53), 458.3 (82), 431 (22), 388 (47), 341 (10), 331.1 (39), 291.8 (14), 280.8 (37), 201 (95), 199.5 (67), 198 (34), 188 (24), 159.5 (100), 156.2 (34), 56.7 (68).

MS(EI) (m / z) of 5 at 28.440 min . (rel. int. - \%): 459.6 (18), 456.3 (100), 458.6 (43), 404.3 (14), 403.5 (25), 389 (56), 355.1 (41), 317.6 (13), 303 (12), 277.4 (18), 224.5 (16), 207 (41), 193.4 (16), 186.4 (42), 175.3 (26), 160 (22), 154.5 (31), 140.8 (19), 133.2 (52), 121.3 (11), 119.1 (46), 53.8 (28).

Elemental analysis: Found: C, 79.0; H, 9.4. Calc. for $\mathrm{C}_{30} \mathrm{H}_{42} \mathrm{Fe}: \mathrm{C}, 78.6 ; \mathrm{H}, 9.2$.

[^0]: ${ }^{1}$ D. Vos, A. Salmon, H-G. Sammler, B. Neumann and P. Jutzi, Organometallics 2000, 19, 3874.
 ${ }^{2}$ P. Schwab, R. H. Grubbs and J. W. Ziller, J. Am. Chem. Soc., 1996, 118, 100.
 ${ }^{3}$ M. Scholl, S. Ding, C. W. Lee and R. H. Grubbs, Org. Lett., 1999, 1, 953.

