Electronic Supplementary Information

Incorporation of triazole into a quinoline-rhodamine conjugate imparts iron (III) selective complexation permitting detection at nano molar levels

Narendra Reddy Chereddy^{*a*}, Sathiah Thennarasu^{**a*} and Asit Baran Mandal^{**b*}

^{*a}Organic Chemistry Division, ^{<i>b*}Chemical Laboratory, CSIR-Central Leather Research Institute, Adyar, Chennai-600 020, India</sup>

Corresponding author Tel.: +91 44 24913289; Fax: +91 44 24911589 E-Mail: <u>thennarasu@gmail.com</u>, <u>abmandal@hotmail.com</u>

Table of contents	Page
¹ H- NMR and ESI-MS Spectra of C (Figures S1- S2)	S2-S3
¹ H- and ¹³ C-NMR Spectra of fluorescent probe 1 (Figures S3- S4)	S4-S5
ESI-MS analytical data of of fluorescent probe 1 (Figures S5)	S6
¹ H- and ¹³ C-NMR Spectra of fluorescent probe 2 (Figures S6- S7)	S7-S8
ESI-MS analytical data of of fluorescent probe 2 (Figures S8)	S9
IR spectra of 2 mM chemosensor 1 (a), chemosensor 2 (b) alone and upon addition of 1 mM metal ions (Figure S9)	S10
Job plot showing the stoichiometry of 2 - Fe^{3+} complex (Figure S10)	S11
ESI-MS analytical data of of 2- Fe^{3+} complex (Figures S11)	S12
Metal ion selectivity studies of 2 in presence of various amino acid (Figure S12)	S13
Metal ion selectivity studies of 2 in presence of various concentrations of blood serum (BS) Figure S13)	S14
Metal ion selectivity studies of 2 in presence of various concentrations of Bovine Serum Albumin (BSA) protein (Figure S14)	S15
pH dependent variation in fluorescence intensity of 2 (Figure S15)	S16
Cell viability assay of probe 2 towards NIH3T3 cells	S17

Fig. S1. ¹H NMR spectrum of C in CDCl₃

Fig. S2. ESI Mass spectrum of C

Fig. S3. ¹H NMR spectrum of 1 in CDCl₃

Fig. S4. ¹³C NMR spectrum of 1 in CDCl₃

Fig. S5. ESI Mass spectrum of 1

Fig. S6. ¹H NMR spectrum of **2** in CDCl₃

Fig. S7. ¹³C NMR spectrum of 2 in CDCl₃

Fig. S8. ESI Mass spectrum of 2

(a)

(b)

Fig. S9. IR spectra of 2 mM probe 1 (a), probe 2 (b) alone and upon addition of 1mM metal ions. Upward arrow shows the decrement in the intensity of spitolactam ring 'C=O' and downward arrow shows the increment in the intensity of metal bound ring opened 'C-O'.

Fig. S10. Job plot of $2-Fe^{3+}$ complex

Fig. S11. ESI Mass spectrum of **2**-Fe³⁺ complex

Fig. S12. Fe^{3+} ion selectivity of **2** (10 μ M) in 1:1v/v 0.01M Tris HCl-CH₃CN pH 7.4 in the presence of various amino acids. The grey bar shows the fluorescence emission intensity upon addition of 1 equiv of Fe(III) to **2** (10 μ M). The dark bars represent the fluorescence emission upon addition of 1 equiv of Fe(III) to a solution containing **2** (10 μ M) and 5 equiv of the amino acid of interest.

Fig. S13. Fe³⁺ ion selectivity of **2** (10 μ M) in 1:1v/v 0.01M Tris HCl-CH₃CN pH 7.4 in the presence of various amounts of human blood serum. The grey bar shows the fluorescence emission intensity upon addition of 1 equiv of Fe(III) to **2** (10 μ M). The dark bars represent the fluorescence emission upon addition of 1 equiv of Fe(III) to a solution of **2** (10 μ M) and various amounts of human blood serum.

Fig. S14. Fe³⁺ ion selectivity of **2** (10 μ M) in 1:1v/v 0.01M Tris HCl-CH₃CN pH 7.4 in the presence of various amounts of Bovine Serum Albumin (BSA). The grey bar shows the fluorescence emission intensity upon addition of 1 equiv of Fe(III) to **2** (10 μ M). The dark bars represent the fluorescence emission upon addition of 1 equiv of Fe(III) to a solution of **2** (10 μ M) and various amounts of BSA.

Fig. S15. pH dependant variation in fluorescence intensity of 2 (10 μ M).

Cell viability assay

The cell viability assay of probe **2** on NIH3T3 cells was determined by MTT (3-(4, 5-Dimethylthiazol-2-yl)-2, 5- diphenyltetrazolium bromide) assay (*J Immunol Methods*, 1983, **65**, 55.). The NIH3T3 cells were trypsinised and seeded in 48-well flat-bottom culture plates at a density of 4 x 10^3 cells per well in 250 µL DMEM supplemented with 10% FBS, 100 IU/mL penicillin, 100 µg/mL streptomycin, 30 µg/mL gentamicin. The cells were allowed for 24 hours to adhere and grow at 37 °C in CO₂ incubator. Then the medium was replaced with 250 µL fresh medium containing various concentrations of probe **2** (0 to 6 µM) and incubated for 12 hours in a humidified chamber with 5% CO₂ after which the medium was removed. The cells were further incubated for 3 hours with 250 µL of fresh medium containing 1 mg/mL MTT reagent. The medium was then removed to eliminate non-reacted MTT reagent. DMSO (100 µL) was added into each well to dissolve the formazan precipitate formed and was measured spectrophotometrically using a microplate reader at 570 nm. The assay was performed in quadruplet for each concentration. The cytotoxicity of the probe **2** was expressed in terms of percentage of cell viability relative to the untreated control cells which was taken as 100 percent viable.