Electronic Supplementary Information

A combined experimental and DFT/TDDFT investigation of structural, electronic, and pH-induced tuning of photophysical and redox properties of osmium(II) mixed-chelate derived from imidazole-4,5-dicarboxylic acid and 2, 2'-bipyridine

Shyamal Das, Debasish Saha, Sourav Mardanya, and Sujoy Baitalik^{*}

Department of Chemistry, Inorganic Chemistry Section, Jadavpur University, Kolkata – 700032, India

E-mail: sbaitalik@hotmail.com

Table S1 Optimized geometry for $\mathbf{1}^+$.

	Coordinates (Angstroms)								
	Gas phase/	E(RB3LYP))	Solution phase/E(RB3LYP)			Triplet stae in MeCN		
	= -1684.32205691 a.u.			= -1684.41039812 a.u.			E(UB3LYP) = -1684.35213481 a.u.		
	X	Y	Ζ	X	Y	Ζ	X	Y	Ζ
Os	0.320944	-0.02072	-0.0433	0.294543	-0.02591	-0.08836	0.281756	-0.04879	-0.10074
N	-3.61627	0.69049	1.563945	-3.60746	0.509895	1.644823	-3.61277	0.360046	1.676327
Н	-4.36798	1.009481	2.170513	-4.31407	0.797975	2.315258	-4.32263	0.638196	2.348518
0	-3.03368	-1.41511	-2.20147	-3.09686	-1.4382	-2.23087	-3.0465	-1.63029	-2.17961
Ν	-1.62078	0.276702	0.68758	-1.63745	0.171769	0.683313	-1.64942	0.066608	0.705737
0	-0.86202	-0.90258	-1.58861	-0.92848	-0.90499	-1.64809	-0.89683	-1.04432	-1.58088
0	-6.19707	0.046596	0.692704	-6.24342	-0.18756	0.730432	-6.23191	-0.44793	0.805164
Ν	0.245044	1.872172	-0.85351	0.140214	1.908674	-0.79689	-0.07653	1.881255	-0.77723
Ν	1.312651	1.060209	1.373137	1.266898	1.011758	1.372049	1.217727	1.020083	1.35739
0	-5.39925	-0.98955	-1.19616	-5.37261	-1.09631	-1.17866	-5.35909	-1.34987	-1.10385
Н	-4.5322	-1.22535	-1.6976	-4.47167	-1.28122	-1.69123	-4.47455	-1.51158	-1.62403
Ν	2.027574	-0.66129	-0.99235	2.047979	-0.52885	-1.04243	2.077687	-0.35031	-1.06551
Ν	0.516409	-1.93998	0.713262	0.602991	-1.95582	0.60513	0.779638	-1.97461	0.532891
С	-2.60569	-0.26101	-0.1556	-2.63824	-0.34092	-0.1495	-2.63455	-0.49758	-0.10846
С	3.875434	-0.42464	-2.54116	3.914837	-0.11289	-2.5293	3.872703	0.305449	-2.54132
Н	4.445307	0.221527	-3.20026	4.441921	0.588247	-3.16681	4.307463	1.063548	-3.1823
С	-0.38854	3.482243	-2.5427	-0.57048	3.5946	-2.37877	-1.02537	3.538871	-2.26128
Н	-0.84061	3.67299	-3.51018	-1.04825	3.826163	-3.32429	-1.5895	3.756953	-3.16088
С	-3.85597	-0.00718	0.386016	-3.87815	-0.13498	0.445789	-3.87402	-0.31903	0.493261
С	1.501863	-2.71637	0.128979	1.680841	-2.63011	0.05871	1.959232	-2.48543	0.026802
С	-2.26305	0.851614	1.72261	-2.25523	0.685097	1.765209	-2.2696	0.586712	1.780052
Н	-1.80271	1.362657	2.55167	-1.77897	1.159184	2.606379	-1.79877	1.095434	2.603886
С	0.701158	4.23206	-0.51199	0.549975	4.25636	-0.33487	0.221492	4.262325	-0.29668
Н	1.103633	5.026569	0.106523	0.948556	5.024227	0.317572	0.62402	5.047693	0.333655
С	3.430466	-2.57171	-1.52303	3.645658	-2.29565	-1.52198	3.896954	-1.88803	-1.5083
Н	3.664592	-3.62179	-1.39137	3.977764	-3.31683	-1.37842	4.366673	-2.85118	-1.35147
С	2.352513	-1.99619	-0.82601	2.49403	-1.82716	-0.86393	2.682904	-1.57836	-0.87082
С	-5.2583	-0.32159	-0.03827	-5.2572	-0.47331	0.013829	-5.24714	-0.70849	0.081376
С	1.374829	2.436322	1.174857	1.294963	2.393484	1.239731	1.135808	2.432579	1.211722
С	4.200725	-1.78796	-2.3919	4.366204	-1.43791	-2.36458	4.498392	-0.94366	-2.35183
Н	5.030441	-2.22433	-2.93856	5.255075	-1.79019	-2.87718	5.434032	-1.17404	-2.85017
С	2.548359	1.33621	3.444653	2.505564	1.212092	3.445853	2.525894	1.277116	3.380449
Н	3.001692	0.869056	4.312688	2.969941	0.712485	4.288923	3.056849	0.810374	4.202176
С	1.65114	-4.07447	0.465288	1.949999	-3.96799	0.399336	2.382126	-3.78538	0.356718
Н	2.420891	-4.67143	-0.01002	2.796761	-4.48278	-0.03839	3.309012	-4.17802	-0.04289
С	0.761682	2.894362	-0.07714	0.649407	2.899272	0.022529	0.43943	2.893704	0.056773
C	-2.17003	-0.92432	-1.41193	-2.2187	-0.94474	-1.43011	-2.19879	-1.10572	-1.38132
C	-0.30698	-2.51737	1.640161	-0.19901	-2.61408	1.495801	0.01114	-2.75188	1.348924
H	-1.06539	-1.87626	2.071243	-1.02659	-2.05134	1.906592	-0.90429	-2.31107	1.720538
U	-0.31061	2.1697	-2.06818	-0.45203	2.26078	-1.97721	-0./9585	2.218332	-1.89177
H	-0.67861	1.324675	-2.63856	-0.81728	1.444975	-2.58848	-1.16101	1.394465	-2.49479
C	2.004672	3.277682	2.111234	1.914064	3.203557	2.208412	1.760596	3.264367	2.191048
H	2.03/426	4.34787	1.93941	1.922197	4.280483	2.08913	1.699943	4.342149	2.086597
U	2.596334	2.734628	3.258761	2.525103	2.616931	3.524717	2.440196	2.707208	3.262417
H	3.085668	5.5/5/16	3.984/13	3.005255	3.23355	4.077062	2.910954	5.544623	4.00475
U	2.791777	0.099399	-1.83309	2.762154	0.304264	-1.858/7	2.6/004/	0.5/014	-1.88249
H	2.505667	1.15/858	-1.93533	2.385951	1.312325	-1.96907	2.158857	1.51612/	-1.99/98
U	1.90/88	0.539248	2.494913	1.8/336/	0.44/356	2.401804	1.919516	0.489835	2.41/25
Н	1.850889	-0.5362	2.606858	1.840417	-0.63182	2.52/526	1.96361	-0.59127	2.4/0441
U U	0.118739	4.534577	-1.75105	-0.06688	4.6126/3	-1.54287	-0.49899	4.584814	-1.45/68
H	0.063584	5.562248	-2.09575	-0.14979	5.65596	-1.82883	-0.66181	5.624339	-1./0611
U	-0.19655	-3.8601	2.010678	0.02/95/	-3.94213	1.868652	0.387867	-4.04942	1.7079
H	-0.88111	-4.2/034	2./4548/	-0.6395	-4.41695	2.5/9206	-0.25143	-4.62851	2.364201
U	0./96896	-4.65939	1.40956	1.119341	-4.63664	1.309603	1.59464	-4.5/5/	1.205603
н	0.898264	-5.7081	1.669454	1.51/2/1	-3.66907	1.577701	1.911826	-5.57938	1.46/903

Table S2 Optimized geometry for 1.

	Coordinates (Angstroms)								
	Gas phase/E(RB3LYP)			Solution pha	se/E(RB3LYI	<u>p</u>)	Triplet stae in MeCN		
	= -1683.88366963 a.u.			= -1683.94827221 a.u.			$E(\hat{U}B3LYP) = -1683.89552904$ a.u.		
	Х	Y	Ζ	Х	Y	Ζ	Х	Y	Ζ
Os	-0.34124	-0.00896	-0.0636	-0.29291	-0.01757	-0.09233	-0.24992	-0.04527	-0.10806
0	0.812539	-0.833	-1.62536	0.925937	-0.86784	-1.65553	0.961642	-0.93371	-1.61964
0	6.22719	0.003874	0.644304	6.278076	-0.18753	0.727311	6.285342	-0.23784	0.826441
0	5.319403	-0.91852	-1.22619	5.348492	-1.04643	-1.15775	5.395835	-1.11117	-1.07002
Н	4.452923	-1.11659	-1.71832	4.453359	-1.21961	-1.6669	4.520469	-1.28533	-1.59392
0	2.957324	-1.32674	-2.29828	3.087321	-1.3866	-2.25281	3.126502	-1.45056	-2.20819
Ν	-0.32152	1.856684	-0.89549	-0.15971	1.908182	-0.80302	-0.02014	1.907736	-0.75035
Ν	-1.26001	1.08115	1.384282	-1.2526	1.014695	1.375289	-1.24066	0.947652	1.377072
Ν	-0.42714	-1.90913	0.725795	-0.55799	-1.94445	0.609993	-0.62998	-2.0071	0.481187
Ν	-2.05118	-0.73752	-0.9355	-2.04363	-0.56187	-1.03198	-2.05201	-0.42751	-1.05741
Ν	3.582933	0.732965	1.622089	3.621787	0.536417	1.724949	3.616765	0.498392	1.769704
N	1.58628	0.310179	0.620942	1.63552	0.183727	0.669594	1.652012	0.125708	0.695557
С	0.18457	2.135396	-2.13828	0.420816	2.259923	-1.99092	0.693811	2.304298	-1.84909
H	0.529138	1.276615	-2.70314	0.782409	1.441287	-2.60063	1.140011	1.511239	-2.43831
C	0.259606	3.440801	-2.62607	0.534959	3.592479	-2.39536	0.818537	3.638968	-2.21732
H	0.6801	3.615479	-3.6109	1.004004	3.822386	-3.34587	1.38281	3.904127	-3.10423
C	-0.19499	4.511158	-1.82291	0.04091	4.613887	-1.55597	0.18621	4.63/214	-1.40843
H	-0.13444	5.534989	-2.1/883	0.12169	5.6566	-1.84496	0.263955	5.686595	-1.6//14
U	-0./1835	4.230164	-0.55502	-0.56054	4.259624	-0.34024	-0.52397	4.255/58	-0.2/881
H C	-1.06888	5.035937	0.081	-0.94942	5.028492	0.31/221	-1.00143	5.005092	0.34313
C	-0.///13	2.89/381	-0.10243	-0.03019	2.902828	1.246010	-0.02884	2.8/4/08	1.22124
C	-1.31477	2.439808	2 550655	-1.20221	2.398287	2 474011	-1.26393	0.364286	2 455880
ч	1 72710	0.370304	2.550055	-1.84871	0.430130	2.474011	-1.80091	0.304280	2.455889
C II	-2 34276	1 386976	3 536716	-2 46347	1 213496	3 467508	-2 51621	1 098918	3 432299
Н	-2.73491	0.930539	4.439905	-2.91656	0.71283	4.316298	-2.9828	0.589014	4.267533
C	-2.38037	2.78776	3.348605	-2.48205	2.619931	3.350691	-2.56637	2.52767	3.306688
Н	-2.7998	3.4403	4.107754	-2.94968	3.235446	4.111902	-3.07671	3.124571	4.056655
С	-1.86303	3.31464	2.160376	-1.88632	3.20712	2.227158	-1.96119	3.137184	2.218586
Н	-1.88049	4.385113	1.986189	-1.89314	4.284492	2.109929	-1.99549	4.215846	2.110251
С	0.463647	-2.42668	1.629432	0.264185	-2.57644	1.50312	0.210816	-2.76373	1.245599
Н	1.210362	-1.74015	2.006631	1.07871	-1.98663	1.902576	1.122523	-2.28502	1.578192
С	0.433323	-3.76566	2.022879	0.072169	-3.90735	1.883587	-0.09422	-4.08006	1.601433
Н	1.172586	-4.12607	2.730503	0.753876	-4.36078	2.594866	0.599569	-4.6409	2.217251
С	-0.54221	-4.62714	1.476437	-1.00212	-4.63488	1.330905	-1.30432	-4.64921	1.151785
Н	-0.57791	-5.67503	1.757684	-1.17148	-5.67078	1.605574	-1.56872	-5.66725	1.417819
С	-1.45853	-4.10576	0.555324	-1.85182	-3.99415	0.418648	-2.16155	-3.88326	0.350923
H	-2.21327	-4.7488	0.11616	-2.68542	-4.53354	-0.01517	-3.0906	-4.30911	-0.0083
C	-1.39079	-2.74772	0.188482	-1.6192	-2.65086	0.06944	-1.80756	-2.56253	0.015088
C	-2.3065	-2.08/54	-0.74324	-2.45572	-1.8/255	-0.85172	-2.59443	-1.68515	-0.85539
U	-5.5829	-2./21/	-1.3935	-3.5983	-2.5/151	-1.50499	-5.80449	-2.05211	-1.4/4/
П	-3.33034	-3./8128	-1.24101	-3.901/9	-3.40141	-1.30011	-4.2224/	-3.03823	-1.31309
U U	-4.22481	-1.98/30	-2.23032	-4.34011	-1.33310	-2.34288	-4.40499	-1.13830	-2.30307
C	-3.03269	-2.409/4	-2.7404	-3.02104	-0.10500	-2.031//	-3.9007	0 141027	-2.70092
Н	-4 59844	0.002153	-2.40997	-4 48109	0.492033	-3 14173	-4 38386	0.878079	-3 13623
C	-2.88882	-0.02552	-1.75375	-2.78667	0.252132	-1.84405	-2.70399	0.462277	-1.86396
H	-2.65262	1.023838	-1.87735	-2.43665	1.269878	-1.95517	-2.24141	1.432728	-1.98521
С	2.14507	-0.8389	-1.45275	2.225262	-0.8971	-1.42623	2.26885	-0.96427	-1.38757
C	2.588445	-0.20146	-0.20182	2.642741	-0.3104	-0.14794	2.669973	-0.38642	-0.10084
С	3.826558	0.0653	0.428112	3.876081	-0.09015	0.510391	3.889197	-0.15007	0.569495
С	2.236722	0.860082	1.697401	2.270167	0.681528	1.777312	2.268387	0.651884	1.800463
Н	1.725766	1.347465	2.514598	1.746385	1.137582	2.60338	1.730784	1.124473	2.607539
С	5.215055	-0.27182	-0.01887	5.24407	-0.43198	0.059514	5.267395	-0.49014	0.142302

3.089034

-3.34781

-4.28211

1.358987

0.502877

2.4665

С Η

С

Н

С

Н

2.107663

1.230803

1.314384

-0.11034

0.530193

1.7543

-0.88681

-1.01971

1.460331

1.789847

2.77833 2.953227

-2.83182

-2.47415

0.084749

0.78217

-1.75988

-1.75474

0.312064

1.328418

-3.92911

-4.39933

0.456872

-0.62447

-1.77851

-1.87969

1.803396

2.488325

2.518494

2.563151

-2.70242

-2.2347

-0.04699

0.661616

-1.81293

-1.74149

0.485806

1.453806

-4.09805

-4.67247

0.30163

-0.77915

-1.86444

-1.98982

1.507073

2.093018

2.475712

2.512622

Г

	Coordinates (Angstroms)									
	Gas phase/E(RB3LYP)			Solution pha	use/E(RB3LYI	P)	Triplet stae in MeCN			
	= -1683.286	44505 a.u.	n	= -1683.456	94821 a.u.	n	E(UB3LYP)	E(UB3LYP) = -1683.41022077 a.u.		
	Х	Y	Z	Х	Y	Z	Х	Y	Z	
Os	0.365403	0.036297	-0.09583	-0.29041	-0.01513	-0.10527	-0.23085	-0.04307	-0.1282	
С	-0.94332	2.638032	0.358486	-1.64117	-2.63366	0.050306	-1.79897	-2.55049	-0.01282	
С	0.351473	2.967307	-0.22988	-2.49259	-1.83517	-0.83576	-2.59404	-1.66522	-0.85933	
С	1.735782	-1.35824	-2.3657	0.405435	2.263664	-1.99697	0.720709	2.364371	-1.77942	
Н	0.912443	-0.89473	-2.90089	0.728285	1.439233	-2.62074	1.185262	1.588689	-2.377	
Ν	1.757601	-1.09119	-1.01605	-0.14079	1.912044	-0.7913	-0.00387	1.934202	-0.70222	
N	-0.96458	-1.51512	0.088624	1.649786	0.128871	0.611692	1.671951	0.084194	0.652831	
0	-5.07814	-0.74014	0.48659	5.562341	-1.82579	-0.13334	5.601963	-1.82608	-0.06496	
0	-2.83605	-0.22625	-2.74244	2.958922	-1.35295	-2.44481	3.043023	-1.33075	-2.40343	
0	-0.77115	0.23316	-1.82829	0.854006	-0.81969	-1.70546	0.922674	-0.84956	-1.66915	
N	-2.64097	-2.68933	1.077295	3.652291	0.43175	1.639828	3.643684	0.411468	1.721301	
N	1.195238	1.874998	-0.42131	-2.07173	-0.5239	-1.0025	-2.04538	-0.40703	-1.06328	
0	-5.40949	-2.69389	-0.72394	6.131336	0.407533	-0.17453	6.17094	0.408311	-0.00052	
N	1.554895	-0.48298	1.467268	-1.18121	1.019798	1.407698	-1.2186	0.912438	1.399893	
C	-1.99493	3.554125	0.561924	-1.87742	-3.98006	0.38896	-2.15377	-3.87294	0.326448	
Н	-1.87584	4.589781	0.260124	-2.72696	-4.50554	-0.03132	-3.09801	-4.28708	-0.00691	
N	-1.08022	1.307595	0.722009	-0.55996	-1.94162	0.574066	-0.60105	-2.0084	0.426182	
C	2.933308	3.381355	-1.19969	-3.99787	-0.11189	-2.41792	-3.90835	0.174212	-2.49206	
H	3.945977	3.500514	-1.57321	-4.55887	0.592075	-3.02318	-4.3923	0.915281	-3.11815	
C	-2.14045	-1.31756	-0.67496	2.648526	-0.38597	-0.23383	2.695502	-0.42689	-0.1703	
С	-1.32766	-2.35957	1.106993	2.295491	0.596829	1.711814	2.288684	0.572891	1.761527	
H	-0.63199	-2.71792	1.853318	1.788826	1.047524	2.552649	1.757949	1.025341	2.585782	
C	-3.181	-2.00852	-0.02598	3.884824	-0.19195	0.416604	3.912465	-0.21518	0.505575	
C	2.690651	-2.1732	-2.96633	0.536883	3.59686	-2.39093	0.832825	3.710161	-2.11545	
H	2.626278	-2.36486	-4.03299	0.978091	3.8263	-3.355	1.407524	4.002915	-2.98698	
C	3.718293	-2.75359	-2.17/44	0.098802	4.622161	-1.5234	0.1746	4.679533	-1.2961	
H	4.46/933	-3.39661	-2.63006	0.194342	5.665673	-1.80534	0.239374	5.735869	-1.54009	
C	3.496009	-1.7772	2.204049	-1./1626	3.21/81/	2.317/37	-1.96187	3.0/2968	2.289251	
H	4.320529	-2.43765	1.953817	-1.69092	4.296886	2.218037	-2.013	4.152829	2.200981	
U U	0.780339	4.2/1//6	-0.5504/	-3.65826	-2.31068	-1.46/4/	-3.81563	-2.02246	-1.46865	
H	0.10034	5.104829	-0.40702	-3.96/01	-3.34093	-1.33355	-4.23583	-3.00789	-1.30685	
C	-4.69339	-1.82205	-0.131/5	5.292756	-0.5658	-0.00457	5.332763	-0.5/221	0.108417	
C	2.0303/5	-1.32425	1.1/9803	-1.1/201	2.40/126	1.30293	-1.28310	2.320259	1.283/9/	
U	2.18/400	-0.33139	3.813381	-2.51601	0.721464	3.343/90	-2.40984	0.474691	3.474343	
H C	1.976975	-0.20613	4.82/394	-2./3654	0.721464	4.399399	-2.91904	0.4/4681	4.304/8	
U	2.070644	4.493848	-1.041/8	-4.42093	-1.43064	-2.20783	-4.4/914	-1.10403	-2.28908	
П	2.402255	5.496836	-1.294/1	-5.31945	-1.80831	-2./3988	-5.41/54	-1.3/220	-2./6364	
C	-2.00436	-0.41079	-1.82842	2.19504	-0.8985	-1.53005	2.2/5838	-0.90882	-1.49244	
U	3./39918	-2.49424	-0.80431	-0.4038	4.20922	-0.28961	-0.3432	4.201087	-0.18393	
П	4.30000/	-2.93013	-0.1/303	-0.80829	2 50595	0.39002	-1.041/0	4.96919/	0.446212	
U U	-2.23519	0.12000	1.293008	1 112027	-2.39383	1.430319	1 19569	-2./0248	1.133680	
п	-2.33383	-0.13999	0.22702	0.57004	-2.01859	1.8101//	1.18308	-2.31231	0.126705	
C	2./318/	-1.00390	-0.22/93	-0.3/904	2.91051	1.270594	-0.03108	2.8/2400	1.002929	
U U	-5.2110/	3.109814	1.09/02	-1.01188	-4.04052	1.2/0384	-1.2/98/	-4.03210	1.092828	
П	-4.04/9/	1 38660	3 528/71	2 20190	-3.0/84	3 451402	-1.34334	-3.00984	3 374070	
н	3.2031//	-1.36009	3.3204/1 4.322104	-2.29109	3 2/7075	1 228010	-2.34007	2.435275	1 1 2 0 0 4	
11	5.757457	-1./55/5	7.544104	-2./122	5.471713	T.200740	-5.05009	5.011250	7.13904	

Table S3 Optimized geometry for 1⁻.

MO	Energy	, hartee		(%) Co			position		
				Gas			Soln		
1 ⁺	Gas	Soln	Os	H ₂ Imdc ⁻	bipy	Os	H ₂ Imdc ⁻	bipy	
HOMO-3	-0.35646	-0.27159	2.41	93.12	3.50	0.20	0.56	99.22	
HOMO-2	-0.31348	-0.21320	64.58	8.66	26.73	65.63	7.91	26.20	
HOMO-1	-0.30605	-0.20912	61.24	12.52	26.20	64.51	9.92	26.20	
HOMO	-0.30085	-0.20277	63.65	10.82	25.51	69.48	7.46	23.05	
LUMO	-0.19743	-0.09826	5.05	1.74	93.11	2.73	27.20	70.05	
LUMO+1	-0.19015	-0.09258	9.83	1.79	88.36	9.25	7.38	83.36	
LUMO+2	-0.17017	-0.09099	1.58	14.29	84.11	4.25	70.10	25.63	
LUMO+3	-0.16317	-0.06574	0.75	81.13	18.11	0.811	2.62	96.56	
1				HImdc ²⁻			Himdc ²⁻		
HOMO-3	-0.21494	-0.24974	0.86	98.60	0.52	1.01	96.95	2.03	
HOMO-2	-0.20863	-0.20241	51.92	15.89	32.18	62.14	7.92	29.91	
HOMO-1	-0.20377	-0.19920	55.81	17.27	26.97	62.54	12.35	25.09	
HOMO	-0.19920	-0.19318	57.15	20.8	22.01	68.81	8.67	22.51	
LUMO	-0.10674	-0.09236	8.527	1.70	89.76	5.48	3.34	91.17	
LUMO+1	-0.10165	-0.08629	11.44	2.10	86.44	10.62	1.64	87.72	
LUMO+2	-0.07971	-0.06243	0.77	0.41	98.80	4.09	68.27	27.61	
LUMO+3	-0.06840	-0.06121	2.43	0.45	97.10	0.41	23.42	76.16	
1-				Imdc ³⁻			Imdc ³⁻		
HOMO-3	-0.08877	-0.20252	13.12	80.79	6.08	13.12	80.79	6.08	
HOMO-2	-0.06101	-0.19107	56.06	13.22	30.73	56.03	13.22	30.73	
HOMO-1	-0.05757	-0.18521	56.07	19.16	24.76	56.07	19.16	24.76	
HOMO	-0.04362	-0.18152	60.05	19.19	20.75	60.05	19.19	20.75	
LUMO	-0.00913	-0.08591	7.30	1.69	90.99	7.30	1.69	90.98	
LUMO+1	0.00110	-0.08012	11.48	1.79	86.72	11.48	1.79	86.71	
LUMO+2	0.01662	-0.05640	1.10	0.55	98.33	1.10	0.55	98.33	
LUMO+3	0.02751	-0.04796	2.56	0.35	97.08	2.56	0.35	97.08	

Table S4 Selected molecular orbitals along with their energies and compositions for 1^+ , 1, and 1^-

		1+			1			1-		
	$^{1}A'$	³ A'	³ A [′]	$^{1}A'$	$^{3}A'$	³ A′	$^{1}A'$	$^{3}A'$	³ A [′]	
		(UKS)	(TD-DFT)		(UKS)	(TD-DFT)		(UKS)	(TD-DFT)	
Os ₁ -N ₁	2.038	2.039	2.012	2.034	2.042	2.019	2.038	2.055	2.061	
Os_1-N_2	2.066	2.076	2.090	2.057	2.068	2.087	2.051	2.071	2.062	
Os ₁ -N ₃	2.073	2.087	2.084	2.067	2.083	2.077	2.060	2.075	2.131	
Os_1-N_4	2.058	2.060	2.061	2.060	2.072	2.072	2.058	2.073	2.087	
Os_1-N_5	2.089	2.096	2.100	2.083	2.071	2.084	2.073	2.080	2.082	
Os_1-O_4	2.168	2.138	2.136	2.156	2.131	2.121	2.125	2.087	2.070	
	172.0		170 0	1715		152.2	170.5		4 = 0.4	
$O_4 - Os_1 - N_1$	1/2.0	173.5	172.9	1/1.5	173.7	173.3	1/0.5	173.8	170.4	
$O_4 - Os_1 - N_2$	94.2	96.4	96.5	94.7	96.3	96.2	93.7	95.9	95.2	
$O_4 - Os_1 - N_3$	86.2	84.9	85.0	87.2	84.9	85.1	87.9	85.9	88.1	
$O_4 - Os_1 - N_4$	89.8	95.0	93.6	92.6	95.3	93.5	92.5	94.7	92.9	
O_4 - Os_1 - N_5	78.3	77.5	77.3	77.2	77.7	77.5	77.4	78.0	78.6	
N_1 -Os ₁ - N_2	78.7	78.7	80.1	78.7	79.6	79.9	78.6	79.3	77.9	
N ₁ -Os ₁ -N ₃	101.0	99.3	98.6	99.6	99.4	98.8	99.9	98.9	99.2	
N ₁ -Os ₁ -N ₄	94.7	92.8	92.9	93.5	90.0	92.4	94.0	89.7	94.3	
N_1 - Os_1 - N_5	97.6	97.3	96.0	97.1	97.0	96.5	96.7	97.6	94.7	
N ₂ -Os ₁ -N ₃	175.7	175.9	176.6	176.3	175.6	176.9	176.6	175.9	172.9	
N ₂ -Os ₁ -N ₄	97.7	97.6	98.4	98.3	97.3	98.8	98.6	97.9	94.6	
N ₂ -Os ₁ -N ₅	88.4	88.2	84.2	88.6	86.5	84.8	88.9	86.8	92.2	
N ₃ -Os ₁ -N ₄	78.5	78.5	78.5	78.4	78.3	78.4	78.4	78.3	78.9	
N ₃ -Os ₁ -N ₅	95.2	95.8	98.9	94.8	97.7	98.0	94.2	97.0	94.4	
N ₄ -Os ₁ -N ₅	167.0	169.0	170.8	168.2	172.3	170.7	167.8	171.7	169.6	

Table S5 Calculated bond distances (Å) and angles (deg) for 1⁺, 1, and 1 in singlet and triplet States.

Table S6 Mulliken spin density distribution over different moieties for the three complexes $(1^+, 1, \text{ and } 1^-)$.

Spin		1^+			1 ⁰			1-	
density	Os	H ₂ Imdc ⁻	bipy	Os	HImdc ²⁻	bipy	Os	Imdc ³⁻	bipy
One-e ⁻ oxidized	0.9670	0.0223	0.0107	0.9660	0.0355	-0.0015	0.9439	0.0726	-0.0165
One-e- reduced	0.0766	0.0199	1.0567	0.0856	0.0054	1.0803	0.0951	0.0018	1.0934

Fig. S1 Schematic drawings of the selective frontier molecular orbitals for $[(bipy)_2Os (H_2Imdc)]^+ (1^+)$ in gas (a) and solution phase (b).

Fig. S2 Schematic drawings of the selective frontier molecular orbitals for [(bipy)₂Os (HImdc)] (1) in gas (a) and solution phase (b).

Fig. S3 Schematic drawings of the selective frontier molecular orbitals for $[(bipy)_2Os (Imdc)]^-(1^-)$ in gas (a) and solution phase (b).

Fig. S4 Emission spectra of $[(bipy)_2Os(H_2Imdc)]^+$ (1⁺), $[(bipy)_2Os(HImdc)]$ (1), and $[(bipy)_2Os(Imdc)]^-$ (1⁻) in ethanol-methanol (1:4) glass at 77 K.

Fig. S5 TD-DFT calculated electronic transitions for $[(bipy)_2Os(H_2Imdc)]^+$ (1⁺)

Excitation energies and oscillator strengths:

Excited State 1: Singlet-A 1.9887 eV 623.45 nm f= 0.0079<S**2>=0.000 $HOMO-2 \rightarrow LUMO$ 0.10162 HOMO → LUMO 0.63917 $HOMO \rightarrow LUMO+1$ -0.260712.0760 eV 597.24 nm f= 0.0013<S**2>=0.000 Excited State 2: Singlet-A $HOMO-2 \rightarrow LUMO+2$ 0.13309 HOMO-1 \rightarrow LUMO+2 -0.10173HOMO \rightarrow LUMO+2 0.67602 Excited State 3: Singlet-A 2.2382 eV 553.95 nm f= 0.0083<S**2>=0.000 $HOMO-2 \rightarrow LUMO$ -0.10534HOMO-1 \rightarrow LUMO 0.46572 HOMO-1 \rightarrow LUMO+1 -0.20572 $\text{HOMO-1} \rightarrow \text{LUMO+2}$ -0.36102HOMO → LUMO 0.16891 $HOMO \rightarrow LUMO+1$ 0.22833 Excited State 4: Singlet-A 2.2434 eV 552.66 nm f= 0.0021<S**2>=0.000 HOMO-1→LUMO -0.20543 HOMO-1→LUMO+2 0.16773 HOMO→LUMO 0.22151 HOMO→LUMO+1 0.60140 2.3179 eV 534.90 nm f= 0.0133<S**2>=0.000 Excited State 5: Singlet-A $HOMO-2 \rightarrow LUMO$ 0.48002 HOMO-2 \rightarrow LUMO+1 -0.13960HOMO-2 \rightarrow LUMO+2 0.33987 $HOMO-1 \rightarrow LUMO$ 0.29990 HOMO-1 \rightarrow LUMO+2 0.18830 Excited State 6: Singlet-A 2.4538 eV 505.28 nm f=0.0902 <S**2>=0.000

$HOMO-2 \rightarrow LUMO$	0.39416
$HOMO-2 \rightarrow LUMO+1$	0.14198
$HOMO-1 \rightarrow LUMO$	-0.32193
HOMO-1 \rightarrow LUMO+1	-0.30729
HOMO-1 \rightarrow LUMO+2	-0.32705
Excited State 7: Singlet-A	2.5031 eV 495.32 nm f=0.1115 <s**2>=0.000</s**2>
HOMO-2 \rightarrow LUMO	0.27596
$HOMO-2 \rightarrow LUMO+1$	0.12051
$HOMO-2 \rightarrow LUMO+2$	-0.37618
$HOMO-1 \rightarrow LUMO$	0.14146
HOMO-1 \rightarrow LUMO+1	0.46650
HOMO-1 \rightarrow LUMO+2	-0.11437
Excited State 8: Singlet-A	2.5821 eV 480.16 nm f=0.0739 <s**2>=0.000</s**2>
$HOMO-2 \rightarrow LUMO+1$	0.57628
$HOMO-1 \rightarrow LUMO+1$	-0.16568
HOMO-1 \rightarrow LUMO+2	0.32409
Excited State 9: Singlet-A	2.7341 eV 453.48 nm f=0.0639 <s**2>=0.000</s**2>
$HOMO-2 \rightarrow LUMO+1$	0.29230
$HOMO-2 \rightarrow LUMO+2$	0.40991
$HOMO-1 \rightarrow LUMO+1$	0.30155
HOMO-1 \rightarrow LUMO+2	-0.20888
$HOMO \rightarrow LUMO+2$	-0.13085
$HOMO \rightarrow LUMO+4$	-0.19162
$HOMO \rightarrow LUMO+6$	0.17431
Excited State 10: Singlet-A	2.9974 eV 413.64 nm f=0.0721 <s**2>=0.000</s**2>
$HOMO \rightarrow LUMO+3$	0.68791
Excited State 11: Singlet-A	3.0945 eV 400.66 nm f=0.1224 <s**2>=0.000</s**2>
HOMO-1 \rightarrow LUMO+3	0.51025
$HOMO \rightarrow LUMO+4$	-0.43511
$HOMO \rightarrow LUMO+5$	0.15623
Excited State 12: Singlet-A	3.2012 eV 387.30 nm f=0.0083 <s**2>=0.000</s**2>
$HOMO-2 \rightarrow LUMO+3$	-0.11336
HOMO-1 \rightarrow LUMO+3	0.36102
HOMO-1 \rightarrow LUMO+5	-0.13855
$HOMO \rightarrow LUMO+4$	0.45251
$HOMO \rightarrow LUMO+5$	0.28581
$HOMO \rightarrow LUMO+6$	0.15256
Excited State 13: Singlet-A	3.2377 eV 382.94 nm f=0.0562 <s**2>=0.000</s**2>
$HOMO-2 \rightarrow LUMO+3$	-0.26702
HOMO-1 \rightarrow LUMO+3	-0.28747
$HOMO-1 \rightarrow LUMO+4$	-0.14502
$HOMO \rightarrow LUMO+4$	-0.13266
HOMO \rightarrow LUMO+5	0.50804
HOMO \rightarrow LUMO+6	-0.17161

Excited State 14:

Singlet-A 3.3049 eV 375.15 nm f=0.0525 <S**2>=0.000

$HOMO-2 \rightarrow LUMO+3$	0.61287
HOMO-1 \rightarrow LUMO+4	-0.21160
$HOMO \rightarrow LUMO+5$	0.20721
Excited State 15: Singlet-A	3.3429 eV 370.89 nm f=0.0408 <s**2>=0.000</s**2>
$HOMO-2 \rightarrow LUMO+6$	0.17186
HOMO-1 \rightarrow LUMO+4	0.20631
HOMO-1 \rightarrow LUMO+5	0.29520
HOMO-1 \rightarrow LUMO+6	-0.23692
$HOMO \rightarrow LUMO+5$	0.17079
$HOMO \rightarrow LUMO+6$	0.46832
Excited State 16: Singlet-A	3.3967 eV 365.01 nm f=0.0187 <s**2>=0.000</s**2>
HOMO-2 \rightarrow LUMO+3	0.14700
$HOMO-2 \rightarrow LUMO+4$	-0.14243
$HOMO-2 \rightarrow LUMO+6$	-0.11029
HOMO-1 \rightarrow LUMO+4	0.56227
$HOMO \rightarrow LUMO+5$	0.17701
$HOMO \rightarrow LUMO+6$	-0.24415
Excited State 17: Singlet-A	3.4487 eV 359.51 nm f=0.0319 <s**2>=0.000</s**2>
$HOMO-2 \rightarrow LUMO+4$	0.48315
$HOMO-2 \rightarrow LUMO+5$	-0.18076
$HOMO-2 \rightarrow LUMO+6$	-0.11722
HOMO-1 \rightarrow LUMO+5	-0.20304
HOMO-1 \rightarrow LUMO+6	-0.13914
$HOMO \rightarrow LUMO+7$	0.36872
Excited State 18: Singlet-A	3.4809 eV 356.18 nm f=0.0329 <s**2>=0.000</s**2>
$HOMO-2 \rightarrow LUMO+4$	-0.19006
$HOMO-1 \rightarrow LUMO+5$	0.25882
$HOMO-1 \rightarrow LUMO+6$	0.27367
$HOMO \rightarrow LUMO+7$	0.53745
Excited State 19: Singlet-A	3.4885 eV 355.41 nm f=0.0180 <s**2>=0.000</s**2>
$HOMO-2 \rightarrow LUMO+4$	0.30768
$HOMO-2 \rightarrow LUMO+5$	-0.21272
$HOMO-2 \rightarrow LUMO+6$	-0.14713
$HOMO-1 \rightarrow LUMO+5$	0.40439
$HOMO-1 \rightarrow LUMO+6$	0.29853
$HOMO \rightarrow LUMO+7$	-0.21943
Excited State 20: Singlet-A	3.5306 eV 351.17 nm f=0.0392 <s**2>=0.000</s**2>
$HOMO-2 \rightarrow LUMO+4$	0.13771
$HOMO-2 \rightarrow LUMO+5$	0.12625
$HOMO-2 \rightarrow LUMO+6$	0.37437
$HOMO-1 \rightarrow LUMO+4$	0.19046
$HOMO-1 \rightarrow LUMO+5$	-0.22441
HOMO-1 \rightarrow LUMO+6	0.44102
HOMO-1 \rightarrow LUMO+7	-0.10211
$HOMO \rightarrow LUMO+6$	0.10317
Excited State 21: Singlet-A	3.5470 eV 349.55 nm f=0.1376 <s**2>=0.000</s**2>

$HOMO-2 \rightarrow LUMO+4$	0.18538
HOMO-2 \rightarrow LUMO+5	0.58971
$HOMO-2 \rightarrow LUMO+6$	-0.26703
Excited State 22: Singlet-A	3.7355 eV 331.91 nm f=0.1173 <s**2>=0.000</s**2>
HOMO-2 \rightarrow LUMO+4	0.11269
HOMO-2 \rightarrow LUMO+6	0.31678
HOMO-2 \rightarrow LUMO+7	-0.11181
HOMO-1 \rightarrow LUMO+7	0.55225
$HOMO \rightarrow LUMO+6$	-0.14290
Excited State 23: Singlet-A	3.7750 eV 328.43 nm f=0.1043 <s**2>=0.000</s**2>
$HOMO-2 \rightarrow LUMO+4$	0.11215
HOMO-2 \rightarrow LUMO+6	0.23550
HOMO-2 \rightarrow LUMO+7	0.54330
HOMO-1 \rightarrow LUMO+5	0.12392
HOMO-1 \rightarrow LUMO+6	-0.14961
HOMO-1 \rightarrow LUMO+7	-0.17268
$HOMO \rightarrow LUMO+6$	-0.16605
Excited State 24: Singlet-A	4.1208 eV 300.87 nm f=0.0077 <s**2>=0.000</s**2>
$HOMO-2 \rightarrow LUMO+2$	-0.10343
$HOMO-2 \rightarrow LUMO+4$	-0.11053
$HOMO-2 \rightarrow LUMO+6$	-0.18540
$HOMO-2 \rightarrow LUMO+7$	0.39991
HOMO-1 \rightarrow LUMO+5	-0.11235
HOMO-1 \rightarrow LUMO+6	0.11031
HOMO-1 \rightarrow LUMO+7	0.33743
$HOMO \rightarrow LUMO+4$	-0.10617
$HOMO \rightarrow LUMO+6$	0.18973
$HOMO \rightarrow LUMO+8$	0.18382
Excited State 25: Singlet-A	4.2304 eV 293.08 nm f=0.0545 <s**2>=0.000</s**2>
HOMO-4 \rightarrow LUMO+2	0.15681
$HOMO-3 \rightarrow LUMO$	0.66074
$HOMO-3 \rightarrow LUMO+2$	-0.10376
Excited State 26: Singlet-A	4.2671 eV 290.56 nm f=0.0829 <s**2>=0.000</s**2>
$HOMO-4 \rightarrow LUMO$	0.62345
$HOMO-3 \rightarrow LUMO+2$	0.28816
Excited State 27: Singlet-A	4.2883 eV 289.12 nm f=0.0014 <s**2>=0.000</s**2>
HOMO-7 \rightarrow LUMO+1	-0.10212
HOMO-6 \rightarrow LUMO	0.40969
HOMO-6 \rightarrow LUMO+1	0.53773
Excited State 28: Singlet-A	4.3325 eV 286.17 nm f=0.0031 <s**2>=0.000</s**2>
$HOMO-1 \rightarrow LUMO+15$	-0.11389
$HOMO \rightarrow LUMO+11$	0.61894
$HOMO \rightarrow LUMO+14$	-0.22056

Excited State 29:

Singlet-A 4.3747 eV 283.41 nm f=0.0144 <S**2>=0.000

HOMO-4 \rightarrow LUMO+2 -0.14481 0.67571 HOMO-3 \rightarrow LUMO+1 Excited State 30: 4.4071 eV 281.33 nm f=0.0264 <S**2>=0.000 Singlet-A $HOMO-4 \rightarrow LUMO$ 0.17057 HOMO-4 \rightarrow LUMO+1 0.61686 HOMO-3 \rightarrow LUMO+2 -0.27581Excited State 31: 4.4550 eV 278.30 nm f=0.3320 <S**2>=0.000 Singlet-A HOMO-4 \rightarrow LUMO+2 0.58200 HOMO-3 \rightarrow LUMO -0.13082HOMO-3 \rightarrow LUMO+1 0.14153 HOMO-3 \rightarrow LUMO+2 -0.25823Excited State 32: 4.4900 eV 276.13 nm f=0.8214 <S**2>=0.000 Singlet-A $HOMO-4 \rightarrow LUMO$ -0.21017HOMO-4 \rightarrow LUMO+1 0.29899 HOMO-4 \rightarrow LUMO+2 0.23913 HOMO-3 \rightarrow LUMO+2 0.46517 HOMO-2 \rightarrow LUMO+5 -0.10178 $HOMO-1 \rightarrow LUMO+11$ -0.12758 Excited State 33: Singlet-A 4.5510 eV 272.43 nm f=0.0655 <S**2>=0.000 $HOMO-2 \rightarrow LUMO+11$ -0.215320.51813 HOMO-1 \rightarrow LUMO+11 HOMO-1 \rightarrow LUMO+14 -0.22605 HOMO \rightarrow LUMO+15 -0.19257 4.6347 eV 267.51 nm f=0.0515 <S**2>=0.000 Excited State 34: Singlet-A HOMO-1 \rightarrow LUMO+8 -0.10033 $HOMO \rightarrow LUMO+8$ 0.63780 Excited State 35: 4.6464 eV 266.84 nm f=0.0004 <S**2>=0.000 Singlet-A HOMO-7 \rightarrow LUMO 0.42863 HOMO-7 \rightarrow LUMO+1 0.51614 HOMO-6 \rightarrow LUMO 0.11987 Excited State 36: 4.6801 eV 264.92 nm f=0.0203 <S**2>=0.000 Singlet-A $HOMO \rightarrow LUMO+9$ 0.68524 Excited State 37: Singlet-A 4.7699 eV 259.93 nm f=0.0145 <S**2>=0.000 $HOMO-2 \rightarrow LUMO+11$ 0.10595 HOMO-1 \rightarrow LUMO+8 0.67191 4.8433 eV 255.99 nm f=0.0180 <S**2>=0.000 Excited State 38: Singlet-A HOMO-5 \rightarrow LUMO -0.44003HOMO-5 \rightarrow LUMO+1 0.14536 HOMO-2 \rightarrow LUMO+8 0.48838 Excited State 39: 4.8473 eV 255.78 nm f=0.0042 <S**2>=0.000 Singlet-A HOMO-5 \rightarrow LUMO 0.40222 HOMO-5 \rightarrow LUMO+1 -0.11890HOMO-2 \rightarrow LUMO+8 0.30639 $HOMO-2 \rightarrow LUMO+11$ -0.35208 $HOMO-2 \rightarrow LUMO+15$ 0.17345 Excited State 40: Singlet-A 4.8547 eV 255.39 nm f=0.0107 <S**2>=0.000

HOMO-5 \rightarrow LUMO 0.25635 HOMO-2 \rightarrow LUMO+8 0.33800 $HOMO-2 \rightarrow LUMO+11$ 0.42670 $HOMO-2 \rightarrow LUMO+15$ -0.18343HOMO-1 \rightarrow LUMO+9 0.12898 $HOMO-1 \rightarrow LUMO+11$ 0.12552 HOMO \rightarrow LUMO+15 -0.10457 Excited State 41: 4.8882 eV 253.64 nm f=0.0033 <S**2>=0.000 Singlet-A HOMO-1 \rightarrow LUMO+9 0.64768 Excited State 42: 4.9572 eV 250.11 nm f=0.0041 <S**2>=0.000 Singlet-A HOMO-5 \rightarrow LUMO+2 0.12044 HOMO-4 \rightarrow LUMO+3 -0.17381HOMO-2 \rightarrow LUMO+9 0.62459 Singlet-A 4.9845 eV 248.74 nm f=0.0090 <S**2>=0.000 Excited State 43: HOMO-5→ LUMO 0.13151 HOMO-5 \rightarrow LUMO+1 0.10588 HOMO-5 \rightarrow LUMO+2 0.66439 HOMO-2 \rightarrow LUMO+9 -0.11464 Excited State 44: Singlet-A 5.0050 eV 247.72 nm f=0.0029 <S**2>=0.000 HOMO-2 \rightarrow LUMO+9 0.14279 $HOMO-2 \rightarrow LUMO+11$ 0.18477 $HOMO-2 \rightarrow LUMO+12$ -0.15052 $HOMO-2 \rightarrow LUMO+14$ 0.15134 $HOMO-2 \rightarrow LUMO+15$ 0.27592 $HOMO-1 \rightarrow LUMO+11$ 0.23278 $HOMO-1 \rightarrow LUMO+14$ -0.10275 $HOMO \rightarrow LUMO+10$ -0.14745 HOMO \rightarrow LUMO+9 -0.20643 $HOMO \rightarrow LUMO+14$ -0.14031 $HOMO \rightarrow LUMO+15$ 0.35980 Excited State 45: 5.0581 eV 245.12 nm f=0.0077 <S**2>=0.000 Singlet-A HOMO-7 \rightarrow LUMO+1 -0.11600 $HOMO-6 \rightarrow LUMO$ 0.50133 HOMO-6 \rightarrow LUMO+1 -0.38654HOMO-3 \rightarrow LUMO+3 0.19724 Excited State 46: 5.0809 eV 244.02 nm f=0.2893 <S**2>=0.000 Singlet-A $HOMO-5 \rightarrow LUMO$ 0.16306 HOMO-5 \rightarrow LUMO+1 0.61586 HOMO-5 \rightarrow LUMO+2 -0.14696HOMO-1 \rightarrow LUMO+10 0.15101 5.0930 eV 243.44 nm f=0.0598 <S**2>=0.000 Excited State 47: Singlet-A $HOMO-9 \rightarrow LUMO$ -0.13175HOMO-8 \rightarrow LUMO -0.11599HOMO-6 \rightarrow LUMO -0.16722 HOMO-6 \rightarrow LUMO+1 0.13252 HOMO-5 \rightarrow LUMO+1 0.10015

HOMO-3 \rightarrow LUN	MO+3	0.57996		
$HOMO-2 \rightarrow LUN$	1O+8	0.11125		
HOMO-1 \rightarrow LUN	1O+9	0.10104		
Excited State 48:	Singlet-A	5.1014 eV 243.04 nm	f=0.0004	<s**2>=0.000</s**2>
$HOMO-3 \rightarrow LUI$	MO+3	-0.10600		
$HOMO \rightarrow LUM$	O+10	0.64041		
Excited State 49:	Singlet-A	5.1414 eV 241.15 nm	f=0.1240	<s**2>=0.000</s**2>
$HOMO-9 \rightarrow LUN$	MO+2	0.10625		
HOMO-8 \rightarrow LUN	ON	0.13439		
HOMO-4 \rightarrow LUN	MO+3	0.58675		
$HOMO-2 \rightarrow LUN$	MO+9	0.18318		
Excited State 50:	Singlet-A	5.1606 eV 240.25 nm	f=0.0113	<s**2>=0.000</s**2>
$HOMO-8 \rightarrow LUN$	MO	0.24113		
$HOMO-8 \rightarrow LUN$	MO+2	0.14901		
$HOMO-7 \rightarrow LUN$	MO+2	0.12178		
$HOMO-6 \rightarrow LUN$	ON	-0.10506		
HOMO-6 \rightarrow LUN	MO+1	0.11677		
$HOMO-6 \rightarrow LUN$	MO+2	0.39632		
$HOMO-4 \rightarrow LUN$	MO+3	-0.11939		
HOMO-4 \rightarrow LUN	MO+4	-0.11325		
HOMO-4 \rightarrow LUN	MO+5	0.13824		
$HOMO-3 \rightarrow LUN$	MO+4	0.24638		
$HOMO-3 \rightarrow LUN$	MO+5	-0.22727		

Fig. S6 TD-DFT calculated electronic transitions for [(bipy)₂Os(HImdc)] (1)

Excitation energies and oscillator strengths: Excited State 1: Singlet-A 1.8502 eV 670.10 nm f= $0.0075 < S^{**}2 > = 0.000$ $HOMO-2 \rightarrow LUMO$ -0.12620HOMO → LUMO 0.68449 1.9364 eV 640.28 nm f= 0.0010 < S**2 > = 0.000Excited State 2: Singlet-A $HOMO-2 \rightarrow LUMO+1$ -0.14296 $HOMO \rightarrow LUMO+1$ 0.68113 Excited State 3: 2.1154 eV 586.11 nm f= 0.0021<S**2>=0.000 Singlet-A $HOMO-2 \rightarrow LUMO$ 0.43059 HOMO-1 \rightarrow LUMO 0.14221 HOMO-1 \rightarrow LUMO+1 0.51990 Excited State 4: 2.1394 eV 579.52 nm f=0.0096 <S**2>=0.000 Singlet-A $HOMO-2 \rightarrow LUMO+1$ 0.29121 HOMO-1 \rightarrow LUMO 0.62597 Excited State 5: Singlet-A 2.3358 eV 530.79 nm f=0.2107 <S**2>=0.000 $HOMO-2 \rightarrow LUMO$ 0.52001 HOMO-1 \rightarrow LUMO+1 -0.43417 $HOMO \rightarrow LUMO$ 0.10071 $HOMO \rightarrow LUMO+5$ -0.10563Excited State 6: Singlet-A 2.5542 eV 485.41 nm f=0.0520 <S**2>=0.000 HOMO-2 \rightarrow LUMO+1 0.56509 $HOMO-1 \rightarrow LUMO$ -0.23305HOMO-1 \rightarrow LUMO+1 0.13069 HOMO-1 \rightarrow LUMO+2 -0.10940 $HOMO \rightarrow LUMO+1$ 0.13040 $HOMO \rightarrow LUMO+4$ 0.16963 HOMO \rightarrow LUMO+6 -0.15584Excited State 7: Singlet-A 2.7569 eV 449.72 nm f=0.0043 <S**2>=0.000 HOMO-1 \rightarrow LUMO+2 0.10247 HOMO \rightarrow LUMO+2 0.67652 Excited State 8: 2.8178 eV 440.00 nm f=0.1414 <S**2>=0.000 Singlet-A $HOMO \rightarrow LUMO+3$ 0.68314 Excited State 9: Singlet-A 3.0122 eV 411.60 nm f=0.0305 <S**2>=0.000 HOMO-1 \rightarrow LUMO+2 0.43684 HOMO-1 \rightarrow LUMO+3 0.30832 $HOMO \rightarrow LUMO+4$ 0.43928 3.0506 eV 406.42 nm f=0.0295 <S**2>=0.000 Excited State 10: Singlet-A HOMO-1 \rightarrow LUMO+3 0.52420 HOMO-1 \rightarrow LUMO+5 -0.11574 $HOMO \rightarrow LUMO+4$ -0.39588HOMO \rightarrow LUMO+5 0.14950 $HOMO \rightarrow LUMO+6$ -0.125693.0540 eV 405.97 nm f=0.0038 <S**2>=0.000 Excited State 11: Singlet-A HOMO-2 \rightarrow LUMO+2 0.60974 0.10955 HOMO-1 \rightarrow LUMO+2 0.30531 HOMO \rightarrow LUMO+5

Excited State 12: 3.0859 eV 401.77 nm f=0.0640 <S**2>=0.000 Singlet-A HOMO-2 \rightarrow LUMO+2 -0.20460HOMO-2 \rightarrow LUMO+3 0.40520 HOMO-1 \rightarrow LUMO+3 -0.14374HOMO-1 \rightarrow LUMO+4 0.18913 $HOMO \rightarrow LUMO+5$ 0.44514 Excited State 13: 3.1188 eV 397.54 nm f=0.0443 <S**2>=0.000 Singlet-A HOMO-2 \rightarrow LUMO+3 -0.10638HOMO-1 \rightarrow LUMO+2 0.39446 HOMO-1 \rightarrow LUMO+3 -0.29429 $HOMO \rightarrow LUMO+4$ -0.23286 $HOMO \rightarrow LUMO+6$ -0.39026Excited State 14: Singlet-A 3.1612 eV 392.20 nm f=0.0239 <S**2>=0.000 HOMO-2 \rightarrow LUMO+2 0.18950 HOMO-2 \rightarrow LUMO+3 0.53508 HOMO-1 \rightarrow LUMO+4 -0.24625HOMO \rightarrow LUMO+5 -0.24479 $HOMO \rightarrow LUMO+6$ -0.11609 Excited State 15: Singlet-A 3.2086 eV 386.41 nm f=0.0033 <S**2>=0.000 $HOMO-2 \rightarrow LUMO+5$ -0.10012HOMO-2 \rightarrow LUMO+6 0.25907 HOMO-1 \rightarrow LUMO+2 -0.23825HOMO-1 \rightarrow LUMO+5 0.40040 $HOMO \rightarrow LUMO+6$ -0.39664 Excited State 16: Singlet-A 3.2501 eV 381.48 nm f=0.0261 <S**2>=0.000 $HOMO-2 \rightarrow LUMO+2$ 0.10240 HOMO-2 \rightarrow LUMO+4 -0.13031HOMO-2 \rightarrow LUMO+5 -0.14853 HOMO-1 \rightarrow LUMO+4 0.50278 HOMO-1 \rightarrow LUMO+6 -0.28980 $HOMO \rightarrow LUMO+5$ -0.28202 Excited State 17: Singlet-A 3.2973 eV 376.02 nm f=0.0310 <S**2>=0.000 $HOMO-2 \rightarrow LUMO+4$ 0.60846 HOMO-1 \rightarrow LUMO+4 0.20286 HOMO-1 \rightarrow LUMO+5 -0.17278 $HOMO \rightarrow LUMO+6$ -0.19397 3.3371 eV 371.53 nm f=0.0408 <S**2>=0.000 Excited State 18: Singlet-A $HOMO-2 \rightarrow LUMO+2$ 0.10967 $HOMO-2 \rightarrow LUMO+4$ -0.13848HOMO-2 \rightarrow LUMO+5 -0.10376HOMO-1 \rightarrow LUMO+4 0.22187 HOMO-1 \rightarrow LUMO+6 0.61277 3.3753 eV 367.33 nm f=0.0243 <S**2>=0.000 Excited State 19: Singlet-A $HOMO-2 \rightarrow LUMO+4$ -0.17255HOMO-2 \rightarrow LUMO+6 0.47003 HOMO-1 \rightarrow LUMO+5 -0.44413

 $HOMO \rightarrow LUMO+4$ 0.10211 3.4010 eV 364.55 nm f=0.1834 <S**2>=0.000 Excited State 20: Singlet-A HOMO-5 \rightarrow LUMO -0.10313HOMO-2 \rightarrow LUMO+5 0.64442 HOMO-1 \rightarrow LUMO+4 0.20180 Excited State 21: Singlet-A 3.7310 eV 332.31 nm f=0.0141 <S**2>=0.000 HOMO-3 \rightarrow LUMO 0.65931 HOMO-3 \rightarrow LUMO+1 -0.10570HOMO-2 \rightarrow LUMO+6 -0.13292 Excited State 22: Singlet-A 3.8401 eV 322.87 nm f=0.0087 <S**2>=0.000 HOMO-3 \rightarrow LUMO 0.20215 HOMO-3 \rightarrow LUMO+1 -0.13487 $HOMO-2 \rightarrow LUMO+1$ 0.15735 $HOMO-2 \rightarrow LUMO+4$ 0.16004 $HOMO-2 \rightarrow LUMO+6$ 0.37800 HOMO-1 \rightarrow LUMO -0.10928HOMO-1 \rightarrow LUMO+2 0.17170 HOMO-1 \rightarrow LUMO+5 0.21035 HOMO-1 \rightarrow LUMO+6 0.11884 $HOMO \rightarrow LUMO+4$ -0.14778 $HOMO \rightarrow LUMO+6$ 0.25186 $HOMO \rightarrow LUMO+7$ 0.14452 Excited State 23: Singlet-A 3.8698 eV 320.39 nm f=0.0048 <S**2>=0.000 HOMO-3 \rightarrow LUMO 0 14219 HOMO-3 \rightarrow LUMO+1 0.68390 Excited State 24: 4.2691 eV 290.42 nm f=0.0655 <S**2>=0.000 Singlet-A HOMO-5 \rightarrow LUMO 0.15488 HOMO-5 \rightarrow LUMO+1 0.18029 HOMO-4 \rightarrow LUMO 0.64739 Excited State 25: Singlet-A 4.3008 eV 288.28 nm f=0.1025 <S**2>=0.000 HOMO-5 \rightarrow LUMO 0.59778 HOMO-4 \rightarrow LUMO -0.15103HOMO-4 \rightarrow LUMO+1 0.31512 4.3319 eV 286.21 nm f=0.0018 <S**2>=0.000 Excited State 26: Singlet-A HOMO-6 \rightarrow LUMO 0.50323 HOMO-6 \rightarrow LUMO+2 0.40954 HOMO-6 \rightarrow LUMO+3 -0.22857Excited State 27: 4.3883 eV 282.53 nm f=0.0073 <S**2>=0.000 Singlet-A HOMO-1 \rightarrow LUMO+10 0.17240 HOMO-1 \rightarrow LUMO+13 -0.11021 $HOMO \rightarrow LUMO+7$ 0.19480 HOMO \rightarrow LUMO+8 -0.25307HOMO \rightarrow LUMO+10 0.42808 $HOMO \rightarrow LUMO+11$ 0.15287 HOMO \rightarrow LUMO+13 -0.25522

Excited State 28: Singlet	-A 4.4103 eV	281.12 nm	f=0.0010	<s**2>=0.000</s**2>
$HOMO-7 \rightarrow LUMO$		0.66722		
HOMO-7 \rightarrow LUMO+2		0.13697		
Excited State 29: Singlet	-A 4.4289 eV	279.94 nm	f=0.0276	<s**2>=0.000</s**2>
HOMO-5 \rightarrow LUMO+1		0.28310		
$HOMO-4 \rightarrow LUMO$		-0.10673		
HOMO-3 \rightarrow LUMO+2		-0.10396		
$HOMO \rightarrow LUMO+7$		0.54415		
$HOMO \rightarrow LUMO+10$		-0.15676		
Excited State 30: Singlet	-A 4.4798 eV	276.76 nm	f=0.2269	<s**2>=0.000</s**2>
HOMO-5 \rightarrow LUMO+1		0.54667		
$HOMO-4 \rightarrow LUMO$		-0.11819		
HOMO-4 \rightarrow LUMO+1		-0.12343		
$HOMO \rightarrow LUMO+7$		-0.25011		
$HOMO \rightarrow LUMO+8$		0.14902		
Excited State 31: Singlet	-A 4.4943 eV	275.87 nm	f=0.6719	<s**2>=0.000</s**2>
HOMO-5 \rightarrow LUMO		-0.26076		
HOMO-5 \rightarrow LUMO+1		0.15864		
HOMO-4 \rightarrow LUMO+1		0.56103		
$HOMO \rightarrow LUMO+9$		0.13675		
Excited State 32: Singlet	-A 4.5154 eV	274.58 nm	f=0.1831	<s**2>=0.000</s**2>
HOMO-7 \rightarrow LUMO+1		-0.17382		
HOMO-3 \rightarrow LUMO+2		0.35067		
HOMO-3 \rightarrow LUMO+3		-0.10271		
$HOMO \rightarrow LUMO+7$		0.20150		
$HOMO \rightarrow LUMO+8$		0.45708		
$HOMO \rightarrow LUMO+10$		0 14155		
Excited State 33: Singlet	-A 4 5424 eV	272 95 nm	f=0.0311	<s**2>=0 000</s**2>
HOMO-3 \rightarrow LUMO+2		0 12587	1 0.0011	5 - 0.000
$HOMO \rightarrow LUMO+8$		-0 20444		
$HOMO \rightarrow LUMO+9$		0.62654		
Excited State 34: Singlet	-A 4 5646 eV	271 62 nm	f=0.0100	<s**2>=0 000</s**2>
HOMO-7 \rightarrow LUMO+1		-0 31770	1 0.0100	5 2 0.000
HOMO-6 \rightarrow LUMO		0 35521		
HOMO-6 \rightarrow LUMO+1		0 23934		
HOMO-6 \rightarrow LUMO+2		-0 28853		
HOMO-6 \rightarrow LUMO+3		0.15084		
HOMO-3 \rightarrow LUMO+2		0.11238		
$HOMO \rightarrow I IIMO+8$		-0 18764		
$HOMO \rightarrow I IIMO+9$		-0.12038		
Excited State 35: Singlet	- A 4 5713 eV	271 22 nm	f=0 0044	<\$**2>=0.000
HOMO $_7 \rightarrow I IIMO$	-л ч.3/13 с v	0 11040	1 0.0077	<5 2> 0.000
$HOMO_7 \rightarrow UUMO_{\pm 1}$		0.11040		
$HOMO_6 \longrightarrow UUMO$		0.3/1/4		
$HOMO_{-6} \rightarrow LUMO_{+1}$		-0 17278		
$\Pi \cup W \cup \neg U \cup W \cup \neg I$		-0.12320		

HOMO-6 \rightarrow LUMO+2 -0.30419 HOMO-6 \rightarrow LUMO+3 0.16037 HOMO-3 \rightarrow LUMO+2 -0.14125HOMO \rightarrow LUMO+8 0.18701 HOMO \rightarrow LUMO+9 0.11502 Excited State 36: Singlet-A 4.5937 eV 269.90 nm f=0.0361 <S**2>=0.000 HOMO-7 \rightarrow LUMO+1 0.18876 HOMO-6 \rightarrow LUMO+1 -0.21550HOMO-3 \rightarrow LUMO+2 0.25893 HOMO-1 \rightarrow LUMO+7 0.54717 Excited State 37: Singlet-A 4.6060 eV 269.18 nm f=0.0286 <S**2>=0.000 HOMO-7 \rightarrow LUMO+1 0.12382 HOMO-6 \rightarrow LUMO+1 - 0.21669 HOMO-3 \rightarrow LUMO+2 0.35791 HOMO-3 \rightarrow LUMO+3 0.26132 HOMO-2 \rightarrow LUMO+7 0.15771 HOMO-1 \rightarrow LUMO+7 -0.32360HOMO-1 \rightarrow LUMO+8 -0.16774HOMO \rightarrow LUMO+8 -0.14796Excited State 38: Singlet-A 4.6270 eV 267.96 nm f=0.0029 <S**2>=0.000 HOMO-7 \rightarrow LUMO+1 0.32467 HOMO-6 \rightarrow LUMO+1 0.54356 HOMO-3 \rightarrow LUMO+3 0.21388 Excited State 39: Singlet-A 4.6315 eV 267.70 nm f=0.0115 <S**2>=0.000 HOMO-3 \rightarrow LUMO+3 0.20634 $HOMO-2 \rightarrow LUMO+10$ 0.36682 $HOMO-2 \rightarrow LUMO+11$ 0.12326 $HOMO-2 \rightarrow LUMO+12$ 0.11266 $HOMO-2 \rightarrow LUMO+13$ -0.21712 $HOMO-2 \rightarrow LUMO+14$ -0.11497HOMO-1 \rightarrow LUMO+8 0.12040 HOMO-1 \rightarrow LUMO+10 -0.22690 $HOMO-1 \rightarrow LUMO+13$ 0.13552 $HOMO \rightarrow LUMO+10$ 0.15915 $HOMO \rightarrow LUMO+15$ 0.19360 Excited State 40: 4.6514 eV 266.55 nm f=0.0624 <S**2>=0.000 Singlet-A HOMO-7 \rightarrow LUMO+1 -0.20759HOMO-6 \rightarrow LUMO+1 -0.11815HOMO-3 \rightarrow LUMO+3 0.49931 HOMO-2 \rightarrow LUMO+7 -0.27449HOMO-2 \rightarrow LUMO+8 0.10734 HOMO-1 \rightarrow LUMO+8 0.12785 $HOMO \rightarrow LUMO+8$ 0.14743 Excited State 41: Singlet-A 4.6802 eV 264.91 nm f=0.0198 <S**2>=0.000 -0.11669 HOMO-8 \rightarrow LUMO HOMO- $3 \rightarrow$ LUMO+2 -0.14616

HOMO-3 \rightarrow LUMO+3 0.12950 HOMO-2 \rightarrow LUMO+7 0.59696 HOMO-2 \rightarrow LUMO+8 0.11979 HOMO-1 \rightarrow LUMO+9 0.12802 4.7230 eV 262.51 nm f=0.0144 <S**2>=0.000 Excited State 42: Singlet-A HOMO-1 \rightarrow LUMO+8 -0.46776HOMO-1 \rightarrow LUMO+9 0.48085 Excited State 43: 4.7370 eV 261.74 nm f=0.0026 <S**2>=0.000 Singlet-A HOMO-8 \rightarrow LUMO 0.22597 -0.14710HOMO-7 \rightarrow LUMO HOMO-7 \rightarrow LUMO+2 0.52300 HOMO-7 \rightarrow LUMO+3 -0.26991HOMO-2 \rightarrow LUMO+8 0.15475 4.7531 eV 260.85 nm f=0.0161 <S**2>=0.000 Excited State 44: Singlet-A HOMO-8 \rightarrow LUMO 0.45832 HOMO-7 \rightarrow LUMO+2 -0.21620 HOMO-7 \rightarrow LUMO+3 0.11027 HOMO-3 \rightarrow LUMO+4 -0.32842HOMO-1 \rightarrow LUMO+8 0.19147 HOMO-1 \rightarrow LUMO+9 0.16038 Excited State 45: 4.7626 eV 260.33 nm f=0.0521 <S**2>=0.000 Singlet-A HOMO-8 \rightarrow LUMO 0.24085 HOMO-3 \rightarrow LUMO+4 0.57071 HOMO-1 \rightarrow LUMO+8 0.18458 HOMO-1 \rightarrow LUMO+9 0.18701 4.7909 eV 258.79 nm f=0.0119 <S**2>=0.000 Excited State 46: Singlet-A HOMO-9 \rightarrow LUMO 0.36187 HOMO-9 \rightarrow LUMO+2 0.20249 HOMO-9 \rightarrow LUMO+3 -0.12049HOMO-8 \rightarrow LUMO -0.23234 $HOMO-3 \rightarrow LUMO+4$ -0.12949 HOMO-2 \rightarrow LUMO+9 -0.14884HOMO-1 \rightarrow LUMO+7 -0.10652 HOMO-1 \rightarrow LUMO+8 0.22816 HOMO-1 \rightarrow LUMO+9 0.26748 Excited State 47: 4.7998 eV 258.31 nm f=0.0064 <S**2>=0.000 Singlet-A $HOMO-9 \rightarrow LUMO$ -0.13506 HOMO-5 \rightarrow LUMO+3 -0.10295HOMO-3 \rightarrow LUMO+4 -0.13961 HOMO-2 \rightarrow LUMO+8 -0.34538HOMO-2 \rightarrow LUMO+9 0.49824 HOMO-1 \rightarrow LUMO+9 0.15382 4.8045 eV 258.06 nm f=0.0107 <S**2>=0.000 Excited State 48: Singlet-A $HOMO-9 \rightarrow LUMO$ 0.40891 HOMO-9 \rightarrow LUMO+2 0.20708 HOMO-9 \rightarrow LUMO+3 -0.12252

Fig. S7 TD-DFT calculated electronic transitions for [(bipy)₂Os(Imdc)]⁻ (1⁻)

Excitation energies and oscillator strengths:

Excited State 1: Singlet-A	1.7093 eV 725.34 nm f= $0.0062 < S^{**}2 > = 0.000$
HOMO-1 \rightarrow LUMO	0.27410
$HOMO \rightarrow LUMO$	0.63675

Excited State 2: 1.7945 eV 690.90 nm f= 0.0007 < S**2 > = 0.000Singlet-A $HOMO-1 \rightarrow LUMO+1$ 0.25388 $HOMO \rightarrow LUMO+1$ 0.63950 Excited State 3: 1.9420 eV 638.45 nm f= 0.0022 < S**2 > = 0.000Singlet-A HOMO-2 \rightarrow LUMO -0.37956 $HOMO-2 \rightarrow LUMO+1$ -0.16113HOMO-1 \rightarrow LUMO 0.12684 HOMO-1 \rightarrow LUMO+1 0.50325 $HOMO \rightarrow LUMO+1$ -0.18764Excited State 4: 1.9702 eV 629.30 nm f=0.0078 <S**2>=0.000 Singlet-A $HOMO-2 \rightarrow LUMO+1$ -0.22568HOMO-1 \rightarrow LUMO 0.58134 HOMO-1 \rightarrow LUMO+1 -0.15233 $HOMO \rightarrow LUMO$ -0.23408Excited State 5: Singlet-A 2.2506 eV 550.88 nm f=0.2019 <S**2>=0.000 $HOMO-2 \rightarrow LUMO$ 0.56020 HOMO-1 \rightarrow LUMO+1 0.35204 -0.16287 $HOMO \rightarrow LUMO+1$ Excited State 6: Singlet-A 2.4302 eV 510.18 nm f=0.0996 <S**2>=0.000 HOMO-2 \rightarrow LUMO+1 0.58275 HOMO-1 \rightarrow LUMO 0.20444 HOMO-1 \rightarrow LUMO+1 0.10916 $HOMO \rightarrow LUMO$ -0.10703HOMO \rightarrow LUMO+3 0.16194 HOMO \rightarrow LUMO+5 -0.13583Excited State 7: 2.6839 eV 461.95 nm f=0.1004<S**2>=0.000 Singlet-A HOMO-3 \rightarrow LUMO 0.47714 HOMO-1 \rightarrow LUMO+2 -0.12985HOMO \rightarrow LUMO+2 -0.45942Excited State 8: Singlet-A 2.7006 eV 459.10 nm f=0.0650 <S**2>=0.000 HOMO-3 \rightarrow LUMO 0.48208 $HOMO-1 \rightarrow LUMO+2$ 0.11576 HOMO \rightarrow LUMO+2 0.47690 Excited State 9: 2.8056 eV 441.92 nm f=0.0023 <S**2>=0.000 Singlet-A HOMO-1 \rightarrow LUMO+2 0.65411 $HOMO \rightarrow LUMO+2$ -0.17303 HOMO \rightarrow LUMO+3 0.11470 Excited State 10: Singlet-A 2.8126 eV 440.82 nm f=0.0078 <S**2>=0.000 HOMO-3 \rightarrow LUMO+1 0.67340 2.9022 eV 427.21 nm f=0.0264 <S**2>=0.000 Excited State 11: Singlet-A HOMO-2 \rightarrow LUMO+2 -0.16102 HOMO \rightarrow LUMO+3 0.51722 $HOMO \rightarrow LUMO+4$ 0.40163 HOMO \rightarrow LUMO+5 0.10074 2.9318 eV 422.89 nm f=0.0303 <S**2>=0.000 Excited State 12: Singlet-A HOMO-2 \rightarrow LUMO+2 -0.30419

HOMO-1 \rightarrow LUMO+3		-0.29505		
HOMO-1 \rightarrow LUMO+4		0.31117		
$HOMO \rightarrow LUMO+3$		-0.27985		
$HOMO \rightarrow LUMO+4$		0.30579		
$HOMO \rightarrow LUMO+5$		-0.18350		
Excited State 13: Singlet-A	3.0074 eV	412.27 nm	f=0.0677	<s**2>=0.000</s**2>
HOMO-2 \rightarrow LUMO+2		0.51851		
HOMO-2 \rightarrow LUMO+4		-0.13288		
HOMO-1 \rightarrow LUMO+3		-0.37453		
$HOMO \rightarrow LUMO+3$		0.10127		
$HOMO \rightarrow LUMO+4$		0.10509		
$HOMO \rightarrow LUMO+5$		-0.13996		
Excited State 14: Singlet-A	3.0215 eV	410.33 nm	f=0.0023	<s**2>=0.000</s**2>
HOMO-2 \rightarrow LUMO+3		0.12803		
HOMO-2 \rightarrow LUMO+5		-0.19597		
HOMO-1 \rightarrow LUMO+3		-0.12324		
HOMO-1 \rightarrow LUMO+4		0.32800		
HOMO-1 \rightarrow LUMO+5		0.17682		
$HOMO \rightarrow LUMO+4$		-0.14428		
$HOMO \rightarrow LUMO+5$		0.48552		
Excited State 15: Singlet-A	3.0655 eV	404.45 nm	f=0.0008	<s**2>=0.000</s**2>
$HOMO-3 \rightarrow LUMO+1$		0.10991		~
HOMO-2 \rightarrow LUMO+2		0.20693		
HOMO-1 \rightarrow LUMO+3		0.31208		
HOMO-1 \rightarrow LUMO+4		0.10219		
HOMO-1 \rightarrow LUMO+5		-0.32056		
$HOMO \rightarrow LUMO+3$		-0.17995		
$HOMO \rightarrow LUMO+4$		0.34648		
$HOMO \rightarrow LUMO+5$		0.20853		
Excited State 16: Singlet-A	3.1241 eV	396.87 nm	f=0.0023	<s**2>=0.000</s**2>
HOMO-2 \rightarrow LUMO+2		0.18821		
HOMO-2 \rightarrow LUMO+5		-0.10994		
HOMO-1 \rightarrow LUMO+3		0.28296		
HOMO-1 \rightarrow LUMO+5		0.53230		
$HOMO \rightarrow LUMO+4$		0.13988		
$HOMO \rightarrow LUMO+5$		-0.17912		
Excited State 17: Singlet-A	3.1599 eV	392.37 nm	f=0.0253	<s**2>=0.000</s**2>
HOMO-2 \rightarrow LUMO+1		-0.10085		
HOMO-2 \rightarrow LUMO+3		0.53240		
HOMO-2 \rightarrow LUMO+5		0.19496		
HOMO-1 \rightarrow LUMO+3		0.16170		
HOMO-1 \rightarrow LUMO+4		0.27521		
HOMO-1 \rightarrow LUMO+5		-0.13040		
$HOMO \rightarrow LUMO+5$		-0.16393		
Excited State 18: Singlet-A	3.2037 eV	387.00 nm	f=0.1198	<s**2>=0.000</s**2>
HOMO-2 \rightarrow LUMO+3		0.40363		

HOMO-2 \rightarrow LUMO+5 -0.36899HOMO-1 \rightarrow LUMO+4 -0.36969 $HOMO \rightarrow LUMO+4$ 0.13010 Excited State 19: 3.2628 eV 379.99 nm f=0.0144 <S**2>=0.000 Singlet-A $HOMO-2 \rightarrow LUMO+4$ 0.66506 HOMO-1 \rightarrow LUMO+3 -0.13023Excited State 20: Singlet-A 3.2725 eV 378.86 nm f=0.0101 <S**2>=0.000 HOMO-4 \rightarrow LUMO 0.68662 Excited State 21: Singlet-A 3.3368 eV 371.56 nm f=0.0043 <S**2>=0.000 HOMO-6 \rightarrow LUMO 0.24575 0.64674 HOMO-5 \rightarrow LUMO HOMO-4 \rightarrow LUMO 0.11357 Excited State 22: Singlet-A 3.4000 eV 364.66 nm f=0.0039 <S**2>=0.000 HOMO-6 \rightarrow LUMO 0.61605 HOMO-5 \rightarrow LUMO -0.26408HOMO-4 \rightarrow LUMO+1 -0.17764Excited State 23: 3.4210 eV 362.43 nm f=0.0081 <S**2>=0.000 Singlet-A HOMO-6 \rightarrow LUMO 0.19753 HOMO-4 \rightarrow LUMO+1 0.66239 Excited State 24: Singlet-A 3.4799 eV 356.28 nm f=0.0023 <S**2>=0.000 HOMO-6 \rightarrow LUMO+1 0.29837 HOMO-5 \rightarrow LUMO+1 0.61369 HOMO-4 \rightarrow LUMO+1 0.13070 Excited State 25: Singlet-A 3.4705 eV 357.25 nm f=0.1369 <S**2>=0.000 HOMO-3 \rightarrow LUMO+2 0.61815 $HOMO-3 \rightarrow LUMO+4$ -0.10975HOMO-2 \rightarrow LUMO+5 -0.20161 Excited State 26: Singlet-A 3.5431 eV 349.93 nm f=0.0019 <S**2>=0.000 HOMO-6 \rightarrow LUMO+1 0.62159 HOMO-5 \rightarrow LUMO+1 -0.31774Excited State 27: 3.6226 eV 342.25 nm f=0.0319 <S**2>=0.000 Singlet-A HOMO-3 \rightarrow LUMO+2 0.29602 HOMO-3 \rightarrow LUMO+3 -0.15746HOMO-3 \rightarrow LUMO+4 0.15212 $HOMO-2 \rightarrow LUMO+1$ 0.11932 $HOMO-2 \rightarrow LUMO+3$ 0.11942 $HOMO-2 \rightarrow LUMO+5$ 0.38209 HOMO-1 \rightarrow LUMO+4 -0.16759HOMO-1 \rightarrow LUMO+5 0.13135 HOMO-1 \rightarrow LUMO+6 -0.13681 HOMO \rightarrow LUMO+3 -0.12359 $HOMO \rightarrow LUMO+4$ 0.10204 $HOMO \rightarrow LUMO+5$ 0.15961 $HOMO \rightarrow LUMO+6$ 0.16193 3.7046 eV 334.68 nm f=0.0183 <S**2>=0.000 Excited State 28: Singlet-A HOMO-3 \rightarrow LUMO+3 0.65137

 $HOMO-3 \rightarrow LUMO+4$ 0.10454 0.18204 $HOMO \rightarrow LUMO+6$ 3.7280 eV 332.57 nm f=0.0016 <S**2>=0.000 Excited State 29: Singlet-A HOMO-3 \rightarrow LUMO+3 -0.14069 $HOMO-3 \rightarrow LUMO+4$ -0.10363HOMO-1 \rightarrow LUMO+6 0.29755 $HOMO \rightarrow LUMO+6$ 0.59402 Excited State 30: 3.7945 eV 326.75 nm f=0.0016 <S**2>=0.000 Singlet-A HOMO-3 \rightarrow LUMO+4 0.64044 HOMO-2 \rightarrow LUMO+5 -0.12190HOMO-1 \rightarrow LUMO+6 0.16686 Excited State 31: 3.8290 eV 323.80 nm f=0.0261 <S**2>=0.000 Singlet-A HOMO-7 \rightarrow LUMO 0.69187 Excited State 32: 3.9065 eV 317.38 nm f=0.0070 <S**2>=0.000 Singlet-A HOMO- $3 \rightarrow$ LUMO+50.68495 Excited State 33: 3.9750 eV 311.91 nm f=0.0354 <S**2>=0.000 Singlet-A HOMO-7 \rightarrow LUMO+1 0.66009 HOMO-1 \rightarrow LUMO+6 0.18053 Excited State 34: Singlet-A 4.0105 eV 309.15 nm f=0.1408 <S**2>=0.000 HOMO-7 \rightarrow LUMO+1 0.19544 HOMO-2 \rightarrow LUMO+5 0.10233 HOMO-2 \rightarrow LUMO+6 0.30951 HOMO-1 \rightarrow LUMO+6 0.48401 HOMO \rightarrow LUMO+6 -0.21476HOMO \rightarrow LUMO+7 0.13175 Excited State 35: 4.0324 eV 307.47 nm f=0.0362 <S**2>=0.000 Singlet-A HOMO-8 \rightarrow LUMO 0.10459 HOMO-2 \rightarrow LUMO+6 0.61402 HOMO-1 \rightarrow LUMO+6 -0.24245HOMO \rightarrow LUMO+6 0.10131 4.0625 eV 305.19 nm f=0.0167 <S**2>=0.000 Excited State 36: Singlet-A HOMO-8 \rightarrow LUMO 0.68072 HOMO-7 \rightarrow LUMO+1 -0.10715Excited State 37: 4.1119 eV 301.52 nm f=0.0012 <S**2>=0.000 Singlet-A HOMO-4 \rightarrow LUMO+2 0.69442 Excited State 38: Singlet-A 4.1758 eV 296.91 nm f=0.0074 <S**2>=0.000 HOMO-6 \rightarrow LUMO+2 0.19695 HOMO-5 \rightarrow LUMO+2 0.66676 Excited State 39: 4.2046 eV 294.88 nm f=0.0019 <S**2>=0.000 Singlet-A HOMO-8 \rightarrow LUMO+1 0.69155 4.2484 eV 291.84 nm f=0.0202 <S**2>=0.000 Excited State 40: Singlet-A HOMO-6 \rightarrow LUMO+2 0.65461 HOMO-5 \rightarrow LUMO+2 -0.20736Excited State 41: Singlet-A 4.2732 eV 290.14 nm f=0.3874 <S**2>=0.000 HOMO-11 \rightarrow LUMO -0.25012 HOMO-10 \rightarrow LUMO 0.59944

 $HOMO-9 \rightarrow LUMO+1$ -0.19353 Excited State 42: Singlet-A 4.2806 eV 289.64 nm f=0.1365 <S**2>=0.000 HOMO-11 \rightarrow LUMO+1 -0.16711 $HOMO-9 \rightarrow LUMO$ 0.48601 HOMO-4 \rightarrow LUMO+3 -0.43224HOMO \rightarrow LUMO+7 -0.13805 Excited State 43: 4.2837 eV 289.43 nm f=0.0759 <S**2>=0.000 Singlet-A HOMO-10 \rightarrow LUMO+1 -0.16875 $HOMO-9 \rightarrow LUMO$ 0.34990 HOMO-4 \rightarrow LUMO+3 0.52656 HOMO \rightarrow LUMO+7 -0.200244.3084 eV 287.77 nm f=0.0093 <S**2>=0.000 Excited State 44: Singlet-A HOMO-12 \rightarrow LUMO -0.10447HOMO-11 \rightarrow LUMO+1 -0.13280 $HOMO-9 \rightarrow LUMO$ 0.28049 HOMO \rightarrow LUMO+7 0.55784 Excited State 45: 4.3436 eV 285.44 nm f=0.0008 <S**2>=0.000 Singlet-A HOMO-6 \rightarrow LUMO+3 0.24233 HOMO-5 \rightarrow LUMO+3 0.55910 HOMO-4 \rightarrow LUMO+3 0.11707 $HOMO-4 \rightarrow LUMO+4$ 0.29448 4.3567 eV 284.58 nm f=0.0047 <S**2>=0.000 Excited State 46: Singlet-A HOMO-5 \rightarrow LUMO+3 -0.31591 $HOMO-4 \rightarrow LUMO+4$ 0.61420 Excited State 47: Singlet-A 4.3633 eV 284.15 nm f=0.0774 <S**2>=0.000 0.44636 HOMO-11 \rightarrow LUMO HOMO-10 \rightarrow LUMO 0.17797 HOMO-9 \rightarrow LUMO+1 -0.25699 HOMO-3 \rightarrow LUMO+6 -0.35222HOMO-1 \rightarrow LUMO+7 0.11069 HOMO \rightarrow LUMO+8 -0.14796 Excited State 48: 4.3830 eV 282.87 nm f=0.0093 <S**2>=0.000 Singlet-A HOMO-11 \rightarrow LUMO -0.10990 HOMO-10 \rightarrow LUMO+1 0.10769 HOMO-9 \rightarrow LUMO+1 0.13420 HOMO-3 \rightarrow LUMO+6 -0.12364 HOMO-1 \rightarrow LUMO+7 0.54337 HOMO-1 \rightarrow LUMO+8 0.13923 HOMO \rightarrow LUMO+7 -0.10395 $HOMO \rightarrow LUMO+8$ 0.27376 Excited State 49: Singlet-A 4.3978 eV 281.92 nm f=0.0552 <S**2>=0.000 HOMO-11 \rightarrow LUMO -0.14298HOMO-3 \rightarrow LUMO+6 -0.38226HOMO-1 \rightarrow LUMO+7 -0.31807HOMO-1 \rightarrow LUMO+8 0.11476 HOMO \rightarrow LUMO+7 0.10275

HOMO \rightarrow LUMO+80.38843Excited State 50:Singlet-A4.4041 eV281.52 nmf=0.1311<S**2>=0.000HOMO-11 \rightarrow LUMO0.32021-0.307600.12886HOMO-5 \rightarrow LUMO+30.128860.306200.30620HOMO \rightarrow LUMO+80.36642

Fig. S8 Optimized geometries and labeling schemes of $[(bipy)_2Os(H_2Imdc)]^+$ (1⁺), $[(bipy)_2Os(HImdc)]$ (1), and $[(bipy)_2Os(Imdc)]^-$ (1⁻) in triplet state in a solution phase.