# **Supporting Information**

# Well-defined *N*-Heterocyclic Carbene Rh-hydroxide Complexes as Alkene Hydrosilylation and Dehydrogenative Silylation Catalysts

Byron J. Truscott, Alexandra M. Z. Slawin and Steven P. Nolan<sup>†</sup>.

EaStCHEM School of Chemistry, University of St Andrews, St Andrews, KY16 9ST, U.K.

# **Table of Contents**

| Optimization studies                  | S4  |
|---------------------------------------|-----|
| Characterization data                 | S6  |
| Selected NMR Spectra                  | S8  |
| Single crystal x-ray diffraction data | S14 |
| References                            | S22 |

| Table S 1 Solvent optimization for reaction: HSiEt <sub>3</sub> (4a) and styrene (5b) <sup>a</sup>              | S4  |
|-----------------------------------------------------------------------------------------------------------------|-----|
| <b>Table S 2</b> Temperature optimization for reaction: HSiEt <sub>3</sub> (4a) and styrene (5b) <sup>a</sup>   | S4  |
| <b>Table S 3</b> Reaction of HSiEt <sub>3</sub> (4a) with different concentrations of Styrene (5b) <sup>a</sup> | S4  |
| Table S 4 Catalyst loading optimization for reaction: HSiEt <sub>3</sub> (4a) and styrene (5b) <sup>a</sup>     | S4  |
| <b>Table S 5</b> Reaction of $HSiEt_3$ (4a) with different concentrations of 1-hexene (5a) <sup>a</sup>         | S5  |
| <b>Table S 6</b> Catalyst loading optimization for reaction: $HSiEt_3$ (4a) and 1-hexene (5a) <sup>a</sup>      | S5  |
| Table S 7 Catalyst comparison for reaction: HSiEt <sub>3</sub> (4a) and styrene (5b) at 60 °C <sup>a</sup>      | S5  |
| Table S 8 Catalyst comparison for reaction: HSiEt <sub>3</sub> (4a) and 1-hexene (5a) at rt <sup>a</sup>        | S5  |
| Table S 9 Bond Lengths (Å) for [Ir(cod)(IDD)(OH)] (3c)                                                          | S14 |
| Table S 10 Bond angles (°) for [Ir(cod)(Ii-PrMe)(OH] (3d)                                                       | S15 |
| Table S 11 Bond Lengths (Å) for [Ir(cod)(IDD)(OH)] (3c)                                                         | S19 |
| Table S 12 Bond Lengths (Å) for [Ir(cod)(IDD)(OH)] (3c)                                                         | S20 |

| <b>Figure S 1</b> <sup>1</sup> H NMR (300 MHz, C <sub>6</sub> D <sub>6</sub> ) spectrum for complex 3d                                            |
|---------------------------------------------------------------------------------------------------------------------------------------------------|
| Figure S 2 <sup>13</sup> C NMR (75 MHz, C <sub>6</sub> D <sub>6</sub> ) spectrum for complex 3d                                                   |
| <b>Figure S 3</b> <sup>1</sup> H NMR (300 MHz, CDCl <sub>3</sub> ) spectrum for the reaction HSiEt <sub>3</sub> (4a) + 1-hexene (5a)              |
| Figure S 4 <sup>1</sup> H NMR (300 MHz, CDCl <sub>3</sub> ) spectrum for the reaction HSiEt <sub>3</sub> (4a) + styrene (5b)                      |
| <b>Figure S 5</b> <sup>1</sup> H NMR (300 MHz, CDCl <sub>3</sub> ) spectrum for the reaction HSiEt <sub>3</sub> (4a) + 4-chlorostyrene (5c) S10   |
| Figure S 6 <sup>1</sup> H NMR (300 MHz, CDCl <sub>3</sub> ) spectrum for the reaction HSiEt <sub>3</sub> (4a) + 1-octene (5d) S10                 |
| <b>Figure S 7</b> <sup>1</sup> H NMR (300 MHz, CDCl <sub>3</sub> ) spectrum for the reaction $HSi(OEt)_3$ (4b) + 4-chlorostyrene (5c). S11        |
| <b>Figure S 8</b> <sup>1</sup> H NMR (300 MHz, CDCl <sub>3</sub> ) spectrum for the reaction HSiPh <sub>2</sub> Me (4c) + hexene (5a) S11         |
| <b>Figure S 9</b> <sup>1</sup> H NMR (300 MHz, CDCl <sub>3</sub> ) spectrum for the reaction HSiPh <sub>2</sub> Me (4c) + styrene (5b) S12        |
| <b>Figure S 10</b> <sup>1</sup> H NMR (300 MHz, CDCl <sub>3</sub> ) spectrum for the reaction HSiPh <sub>2</sub> Me (4c) + chlorostyrene (5c) S12 |
| <b>Figure S 11</b> <sup>1</sup> H NMR (300 MHz, CDCl <sub>3</sub> ) spectrum for the reaction HSiPh <sub>2</sub> Me (4c) + octene (5d) S13        |

| Figure S 12 <sup>1</sup> H NMR (300 MHz, CDCl <sub>3</sub> ) expanded region showing the splitting pattern for all CH <sub>2</sub> signals ( | a  |
|----------------------------------------------------------------------------------------------------------------------------------------------|----|
| and b) of alkylsilane products (6a-n)                                                                                                        | 13 |

# **Optimization studies**

|       |         | $T = 5 h \qquad T = 24 h$ |    |    |            |    |    |
|-------|---------|---------------------------|----|----|------------|----|----|
| Entry | Solvent | Conversion                | 6b | 7b | Conversion | 6b | 7b |
| 1     | Benzene | 80                        | 51 | 49 | 90         | 56 | 44 |
| 2     | Dioxane | 60                        | 61 | 39 | 80         | 65 | 35 |
| 3     | MeOH    | 7                         | 32 | 68 | 8          | 40 | 60 |
| 4     | THF     | 62                        | 50 | 50 | 88         | 56 | 44 |
| 5     | Toluene | 70                        | 53 | 47 | 92         | 58 | 42 |

Table S 1 Solvent optimization for reaction: HSiEt<sub>3</sub> (4a) and styrene (5b)<sup>a</sup>

<sup>a</sup>Reaction Conditions: **4a** (0.3 mmol), **5b** (0.3 mmol), [Rh(cod)(ICy)(OH)] **(3b)** (1.0 mol%), rt, solvent (1 mL).

Conversions and relative product yields as %; calculated from GC-MS (relative to concentration of 4a) and confirmed by <sup>1</sup>H NMR.

| Table 5.2 Temperature optimization for reaction, fisibility (4a) and styrene (5b) | Table S 2 | Temperature | optimization | for reaction: | HSiEt <sub>3</sub> (4a) | and styrene ( | $(5b)^{a}$ |
|-----------------------------------------------------------------------------------|-----------|-------------|--------------|---------------|-------------------------|---------------|------------|
|-----------------------------------------------------------------------------------|-----------|-------------|--------------|---------------|-------------------------|---------------|------------|

|       |           | r          | $\Gamma = 2.5 h$ |    |            | T = 5 h |    |
|-------|-----------|------------|------------------|----|------------|---------|----|
| Entry | Temp (°C) | Conversion | 6b               | 7b | Conversion | 6b      | 7b |
| 1     | rt        | 32         | 53               | 47 | 70         | 55      | 45 |
| 2     | 60        | 93         | 60               | 40 | 93         | 65      | 35 |
| 3     | 80        | 93         | 65               | 35 | 94         | 67      | 33 |

<sup>a</sup>Reaction Conditions: 4a (0.3 mmol), 5b (0.3 mmol), [Rh(cod)(ICy)(OH)] (3b) (1.0 mol%), t, Toluene (1mL).

Conversions and relative product yields as %; calculated from GC-MS (relative to concentration of 4a) and confirmed by <sup>1</sup>H NMR.

#### Table S 3 Reaction of HSiEt<sub>3</sub> (4a) with different concentrations of Styrene (5b)<sup>a</sup>

|       |                  | 1          | r = 2.5 h |    |            | T = 5 h |    |
|-------|------------------|------------|-----------|----|------------|---------|----|
| Entry | Styrene<br>(eq.) | Conversion | 6b        | 7b | Conversion | 6b      | 7b |
| 1     | 1                | 93         | 60        | 40 | 93         | 65      | 35 |
| 2     | 4                | >99        | 19        | 82 | >99        | 18      | 82 |
| 3     | 7                | >99        | 11        | 89 | >99        | 11      | 89 |
| 4     | 10               | >99        | 5         | 95 | >99        | 5       | 95 |

<sup>a</sup>Reaction Conditions: **4a** (0.3 mmol), **5b** (molar equivalence relative to **4a**), [Rh(cod)(ICy)(OH)] (**3b**) (1.0 mol%), 60 °C, Toluene (1mL). Conversions and relative product yields as %; calculated from GC-MS (relative to concentration of **4a**) and confirmed by <sup>1</sup>H NMR.

#### Table S 4 Catalyst loading optimization for reaction: HSiEt<sub>3</sub> (4a) and styrene (5b)<sup>a</sup>

|       |                   |            | T = 1 h |    | ]          | $\Gamma = 2.5 h$ |    |            | T = 5 h |    |
|-------|-------------------|------------|---------|----|------------|------------------|----|------------|---------|----|
| Entry | [Rh] 3b<br>(mol%) | Conversion | 6b      | 7b | Conversion | 6b               | 7b | Conversion | 6b      | 7b |
| -     | (1101 /0)         |            |         |    |            |                  |    |            |         |    |
| 1     | 1.000             | 77         | 54      | 44 | 88         | 51               | 49 | 96         | 53      | 47 |
| 2     | 0.500             | 68         | 63      | 37 | 82         | 57               | 43 | 90         | 50      | 50 |
| 3     | 0.100             | 32         | 70      | 30 | 47         | 69               | 31 | 86         | 65      | 35 |
| 4     | 0.005             | 17         | 80      | 20 | 32         | 77               | 23 | 74         | 71      | 29 |
| 5     | 0.001             | 1          | 50      | 50 | 4          | 50               | 50 | 12         | 60      | 40 |

<sup>a</sup>Reaction Conditions: **4a** (0.3 mmol), **5b** (0.6 mmol), [Rh(cod)(ICy)(OH)] (**3b**) (mol% relative to **4a**), 60 °C, Toluene (1mL). Conversions and relative product yields as %; calculated from GC-MS (relative to concentration of **4a**) and confirmed by <sup>1</sup>H NMR.

|       |                   | T = 1 h    |    | T = 2.5 h |            |    | T = 5 h |            |    |    |
|-------|-------------------|------------|----|-----------|------------|----|---------|------------|----|----|
| Entry | 1-hexene<br>(eq.) | Conversion | 6a | 7a        | Conversion | 6a | 7a      | Conversion | 6a | 7a |
| 1     | 1                 | 35         | 54 | 46        | 54         | 52 | 48      | 55         | 47 | 53 |
| 2     | 2                 | 53         | 85 | 15        | 88         | 94 | 6       | >99        | 99 | 1  |
| 3     | 3                 | 92         | 82 | 18        | 97         | 85 | 15      | >99        | 84 | 16 |
| 4     | 5                 | >99        | 60 | 40        | >99        | 77 | 23      | >99        | 70 | 30 |

#### Table S 5 Reaction of HSiEt<sub>3</sub> (4a) with different concentrations of 1-hexene (5a)<sup>a</sup>

<sup>a</sup>Reaction Conditions: **4a** (0.3 mmol), **5a** (molar equivalence relative to **4a**), [Rh(cod)(ICy)(OH)] (**3b**) (1.0 mol%), 60 °C, Toluene (1mL). Conversions and relative product yields as %; calculated from GC-MS (relative to concentration of **4a**) and confirmed by <sup>1</sup>H NMR.

#### Table S 6 Catalyst loading optimization for reaction: HSiEt<sub>3</sub> (4a) and 1-hexene (5a)<sup>a</sup>

|       |                | T = 4 h T = 24 h |    |    |            |    |    |
|-------|----------------|------------------|----|----|------------|----|----|
| Entry | [3b]<br>(mol%) | Conversion       | 6a | 7a | Conversion | 6a | 7a |
| 1     | 1.00           | 99               | 99 | 1  | >99        | 99 | 1  |
| 2     | 0.50           | 98               | 95 | 5  | >99        | 98 | 2  |
| 3     | 0.10           | 90               | 88 | 12 | 93         | 94 | 6  |
| 4     | 0.05           | 90               | 85 | 15 | 92         | 88 | 12 |

<sup>a</sup>Reaction Conditions: **4a** (0.3 mmol), **5a** (0.6 mmol), [Rh(cod)(ICy)(OH)] (**3b**) (mol% relative to **4a**), 60 °C, Toluene (1mL). Conversions and relative product yields as %; calculated from GC-MS (relative to concentration of **4a**) and confirmed by <sup>1</sup>H NMR.

| Entry | [Rh(cod)(NHC)(OH)]<br>NHC = |        | Conversion | 6b | 7b |
|-------|-----------------------------|--------|------------|----|----|
| 1     | 3a                          | IPr    | 94         | 64 | 36 |
| 2     | 3b                          | ICy    | 93         | 66 | 34 |
| 3     | 3c                          | IDD    | 94         | 66 | 34 |
| 4     | 3d                          | IGoofy | 94         | 67 | 33 |

<sup>a</sup>Reaction Conditions: **4a** (0.3 mmol), **5b** (0.6 mmol), [Rh(cod)(NHC)(OH)] (**3a-d**) ( 0.02 mol%), 60 °C, Toluene (1mL). Conversions and relative product yields as %; calculated from GC-MS (relative to concentration of **4a**) and confirmed by <sup>1</sup>H NMR.

#### Table S 8 Catalyst comparison for reaction: HSiEt<sub>3</sub> (4a) and 1-hexene (5a) at rt<sup>a</sup>

|       |                  |                 |    | Conversion to Products $(6a + 7a)$ (%)/ Time (h) |    |    |    |    |    |    |     |
|-------|------------------|-----------------|----|--------------------------------------------------|----|----|----|----|----|----|-----|
| Entry | [Rh(cod)(N<br>NH | HC)(OH)]<br>C = | 1  | 2                                                | 3  | 4  | 5  | 6  | 7  | 8  | 24  |
| 1     | <b>3</b> a       | IPr             | 3  | 6                                                | 9  | 17 | 20 | 24 | 27 | 28 | 42  |
| 2     | 3b               | ICy             | 40 | 65                                               | 76 | 78 | 80 | 82 | 82 | 82 | 82  |
| 3     | 3c               | IDD             | 30 | 45                                               | 54 | 65 | 74 | 76 | 77 | 78 | 89  |
| 4     | 3d               | IGoofy          | 43 | 75                                               | 88 | 92 | 96 | 97 | 98 | 98 | >99 |

<sup>a</sup>Reaction Conditions: **4a** (0.3 mmol), **5a** (0.6 mmol), [Rh(cod)(NHC)(OH)] (**3a-d**) (1.0 mol%), rt, Toluene (1mL).

Conversions and relative product yields as %; calculated from GC-MS (relative to concentration of 4a) and confirmed by <sup>1</sup>H NMR.

## **Characterization data**

triethyl(hexyl)silane **6a** <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  1.37 – 1.20 (m, 8H), 0.89 – 0.85 (m, 12H), 0.58 – 0.40 (m, 8H); GC-MS m/z = 171 (M-C<sub>2</sub>H<sub>5</sub>, 100), 163, 143, 115.<sup>1</sup>

(*E*)-triethyl(hex-1-en-1-yl)silane **7a** <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>, representative signals )  $\delta$  6.08 (dt, *J* = 18.7, 6.3, 1H), 5.59 (dt, *J* = 18.7, 1.5, 1H), 2.04 - 1.94 (m, 2H); GC-MS *m*/*z* = 198 (M<sup>+</sup>), 169 (M-C<sub>2</sub>H<sub>5</sub>, 100), 141, 113.<sup>2</sup>

triethyl(phenethyl)silane **6b** <sup>1</sup>H NMR (400MHz, C<sub>6</sub>D<sub>6</sub>, representative signals)  $\delta$  2.74 (t, J = 8.0, 2H), 1.02 (t, J = 8.0, 2H), 0.83 (q, J = 8.0, 9H), 0.66 (q, J = 8.0, 6H); GC-MS m/z 191 (M-C<sub>2</sub>H<sub>5</sub>, 100), 163, 135.<sup>3</sup>

(*E*)-triethyl(styryl)silane **7b** <sup>1</sup>H NMR (400MHz, C<sub>6</sub>D<sub>6</sub>)  $\delta$  7.20 (d, *J* = 19.0, 1H), 6.60 (d, *J* = 19.0, 1H), 1.19 (t, *J* = 7.9, 9H), 1.11 (t, *J* = 7.9, 6H); GC-MS *m/z* 218 (M<sup>+</sup>), 189 (M-C<sub>2</sub>H<sub>5</sub>, 100), 161, 131.<sup>2</sup>

(4-chlorophenethyl)triethylsilane **6c** <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>, representative signals)  $\delta$  2.43 – 2.30 (m, 2H), 0.99 (t, *J* = 7.6, 2H); GC-MS *m*/z 225 (M-C<sub>2</sub>H<sub>5</sub>), 197, 169, 141, 115, 87 (100).<sup>4</sup>

(*E*)-(4-chlorostyryl)triethylsilane **7c** <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>, representative signals)  $\delta$  6.61 (d, *J* = 19.3, 1H), 6.17 (d, *J* = 19.3, 1H); GC-MS *m*/*z* 252 (M<sup>+</sup>), 223 (M-C<sub>2</sub>H<sub>5</sub>, 100), 195, 167, 131.<sup>5</sup>

triethyl(octyl)silane **6d** <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>) δ 1.40 – 1.19 (m, 12H), 0.98 – 0.84 (m, 12H), 0.60 – 0.44 (m, 8H); GC-MS *m/z* 200 (M-C<sub>2</sub>H<sub>5</sub>), 199 (100), 171, 115, 87.

(*E*)-triethyl(oct-1-en-1-yl)silane 7d <sup>1</sup>H NMR (400MHz, CDCl<sub>3</sub>, representative signals)  $\delta$  6.13 (dt, *J* = 18.7, 6.3, 1H), 5.63 (dt, *J* = 18.7, 1.5, 1H) 2.17 - 2.08 (m, 2H); GC-MS *m/z* 226 (M<sup>+</sup>), 207, 197 (M-C<sub>2</sub>H<sub>5</sub>, 100), 169.<sup>6</sup>

triethoxy(hexyl)silane **6e** <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  3.81 (q, J = 7.0, 6H), 1.67 – 1.47 (m, 17H), 0.94 – 0.82 (m, 3H), 0.70 – 0.58 (m, 2H); GC-MS *m*/*z* 248 (M<sup>+</sup>), 203 (M-OC<sub>2</sub>H<sub>5</sub>, 100), 163, 149, 139, 119.<sup>7</sup>

triethoxy(phenethyl)silane **6f** <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  7.34 – 7.13 (m, 5H), 3.83 (q, J = 7.0, 6H), 2.79 – 2.70 (m, 2H), 1.24 (t, J = 7.0, 9H), 1.04 – 0.96 (m, 2H); GC-MS m/z 268 (M<sup>+</sup>), 240, 223, 195, 163 (100).<sup>8</sup>

(4-chlorophenethyl)triethoxysilane **6g** <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>, representative signals)  $\delta$  3.82 (q, *J* = 7.4, 6H), 2.75 – 2.65 (m, 2H), 0.99 – 0.91 (m, 2H); GC-MS *m/z* 287 (M-CH<sub>3</sub>), 259 (100), 181.<sup>9</sup>

(*E*)-(4-chlorostyryl)triethoxysilane 7e<sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>, representative signals)  $\delta$  6.15 (d, *J* = 19.3, 1H); GC-MS *m/z* 285 (M-CH<sub>3</sub>), 259, 207, 183, 181(100).<sup>10</sup>

triethoxy(octyl)silane **6h** <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  3.91 (q, J = 7.0, 6H), 1.58 – 1.26 (m, 21H), 0.97 (t, J = 6.7, 3H), 0.78 – 0.67 (m, 2H); GC-MS *m*/*z* 276 (M<sup>+</sup>), 231, 207, 187, 163 (100), 149, 135, 119.<sup>11</sup>

hexyl(methyl)diphenylsilane **6i** <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>) δ 7.60 – 7.48 (m, 4H), 7.43 – 7.28 (m, 6H), 1.44 – 1.20 (m, 8H), 1.12 – 1.04 (m, 2H), 0.81 – 0.93 (m, 3H), 0.56 (s, 3H); GC-MS *m/z* 281 (M<sup>-1</sup>), 267 (M-CH<sub>3</sub>), 225, 204, 197 (100), 183, 165, 121, 105.<sup>12</sup>

(*E*)-hex-1-en-1-yl(methyl)diphenylsilane **7f**<sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>, representative signals)  $\delta$  6.21 (dt, *J* = 18.5, 6.2, 1H), 5.99 (dt, *J* = 18.5, 1.3, 1H), 0.95 (t, *J* = 7.2, 3H), 0.65 (s, 3H); GC-MS *m*/z 280 (M<sup>+</sup>), 265, 223, 197 (100), 183, 145, 121, 105.<sup>13</sup>

methyl(phenethyl)diphenylsilane **6j** (300 MHz, CDCl<sub>3</sub>, representative signals) δ 2.72 – 2.64 (m, 2H), 1.47 – 1.40 (m, 2H), 0.56 (s, 3H); GC-MS *m/z* 287 (M-CH<sub>3</sub>), 224, 197 (100), 183, 165, 146, 121, 105.<sup>12, 13</sup>

(*E*)-methyldiphenyl(styryl)silane **7g** <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>, representative signals)  $\delta$  6.96 (d, *J* = 19.0, 1H), 6.75 (d, *J* = 19.0, 1H), 0.71 (s, 3H); GC-MS *m*/*z* 300 (M<sup>+</sup>), 285, 222, 207 (100), 197, 183, 165, 155, 145, 129, 121, 105.<sup>14</sup>

(4-chlorophenethyl)(methyl)diphenylsilane **6k** <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>, representative signals) δ 2.72 – 2.63 (m, 2H), 1.46 – 1.37 (m, 2H), 0.55 (s, 3H); GC-MS *m/z* 321 (M-CH<sub>3</sub>), 281, 258, 243, 207, 197 (100).<sup>12</sup>

(*E*)-(4-chlorostyryl)(methyl)diphenylsilane **7h** <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>) δ 7.58 (d, *J* = 7.5, 2H ), 7.47 (d, *J* = 7.6, 2H), 7.43 – 7.26 (m, 10H), 6.97 (d, *J* = 19.1, 1H), 6.76 (d, *J* = 19.1, 1H), 0.72 (s, 3H); GC-MS *m*/*z* 334 (M<sup>+</sup>), 319, 256, 241 (100), 222, 207, 183, 179, 165, 155, 121, 105.

methyl(octyl)diphenylsilane **61** <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  7.46 – 7.33 (m, 10H), 1.49 – 1.21 (m, 12H), 1.15 – 1.07 (m, 2H), 0.91 (t, J = 7.0, 3H), 0.58 (s, 3H); GC-MS m/z 295 (M-CH<sub>3</sub>), 232, 197 (100), 183, 165, 121, 105.<sup>12</sup>

(*E*)-methyl(oct-1-en-1-yl)diphenylsilane 7i <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>, representative signals)  $\delta$  6.21 (dt, *J* = 18.6, 6.2, 1H), 5.99 (dt, *J* = 18.5, 1.4, 1H), 0.65 (s, 3H); GC-MS *m*/*z* 308 (M<sup>+</sup>), 293, 281, 223, 197 (100), 183, 145, 121, 105.

hexyltriphenylsilane **6m** <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>, representative signals)  $\delta$  0.89 (t, *J* = 7.4, 2H); GC-MS *m/z* 315 (M-C<sub>2</sub>H<sub>5</sub>), 282, 267, 259 (100), 181.

(*E*)-hex-1-en-1-yltriphenylsilane **7j** <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>, representative signals)  $\delta$  6.28 – 6.34 (m, 2H), 1.02 (t, *J* = 7.2, 2H); GC-MS *m*/*z* 342 (M<sup>+</sup>), 260, 182 (100).<sup>2</sup>

phenethyltriphenylsilane **6n** <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>, representative signals)  $\delta$  2.82 – 2.72 (m, 2H), 1.80 – 1.69 (m. 2H); GC-MS *m/z* 287 (M-C<sub>6</sub>H<sub>5</sub>), 281, 259 (100), 207, 181.

triphenyl(styryl)silane **7k** <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>) δ 7.55 – 7.43 (m, 6H), 7.41 – 7.18 (m, 14H), 7.18 – 7.13 (m, 2H); GC-MS *m/z* 285 (M-C<sub>6</sub>H<sub>5</sub>), 259, 207, 181 (100), 105.<sup>2</sup>

triethyl(oct-1-en-2-yl)silane **8a** <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>) δ 5.47 – 5.42 (m, 2H), 1.92 – 2.0 (m, 2H); GC-MS *m/z* 226 (M<sup>+</sup>), 197, 169, 115 (100), 87.<sup>6</sup>

# Selected NMR Spectra



Figure S 2 <sup>13</sup>C NMR (75 MHz, C<sub>6</sub>D<sub>6</sub>) spectrum for complex 3d



Figure S 3 <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>) spectrum for the reaction HSiEt<sub>3</sub> (4a) + 1-hexene (5a)



Figure S 4 <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>) spectrum for the reaction HSiEt<sub>3</sub> (4a) + styrene (5b)



**Figure S 5** <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>) spectrum for the reaction HSiEt<sub>3</sub> (4a) + 4-chlorostyrene (5c)



Figure S 6  $^{1}$ H NMR (300 MHz, CDCl<sub>3</sub>) spectrum for the reaction HSiEt<sub>3</sub> (4a) + 1-octene (5d)



Figure S 7  $^{1}$ H NMR (300 MHz, CDCl<sub>3</sub>) spectrum for the reaction HSi(OEt)<sub>3</sub> (4b) + 4-chlorostyrene (5c)



Figure S 8 <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>) spectrum for the reaction HSiPh<sub>2</sub>Me (4c) + hexene (5a)



Figure S 9 <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>) spectrum for the reaction HSiPh<sub>2</sub>Me (4c) + styrene (5b)



Figure S 10 <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>) spectrum for the reaction HSiPh<sub>2</sub>Me (4c) + chlorostyrene (5c)



**Figure S 12** <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>) expanded region showing the splitting pattern for all CH<sub>2</sub> signals (a and b) of alkylsilane products (6a-n)

# Single crystal x-ray diffraction data

Table S 9 Bond Lengths (Å) for [Ir(cod)(IDD)(OH)] (3c)

| Rh(1)-O(1)   | 2.024(6)  | C(11)-C(12)  | 1.538(5) |
|--------------|-----------|--------------|----------|
| Rh(1)-C(1)   | 2.054(8)  | C(11)-H(11A) | 0.9900   |
| Rh(1)-C(31)  | 2.109(8)  | C(11)-H(11B) | 0.9900   |
| Rh(1)-C(32)  | 2.126(8)  | C(12)-C(13)  | 1.533(5) |
| Rh(1)-C(35)  | 2.187(8)  | C(12)-H(12A) | 0.9900   |
| Rh(1)-C(36)  | 2.210(8)  | C(12)-H(12B) | 0.9900   |
| O(1)-H(1O)   | 0.9801    | C(13)-C(14)  | 1.534(5) |
| C(1)-N(2)    | 1.356(10) | C(13)-H(13A) | 0.9900   |
| C(1)-N(5)    | 1.359(10) | C(13)-H(13B) | 0.9900   |
| N(2)-C(3)    | 1.391(10) | C(14)-C(15)  | 1.541(5) |
| N(2)-C(6)    | 1.465(10) | C(14)-H(14A) | 0.9900   |
| C(3)-C(4)    | 1.330(11) | C(14)-H(14B) | 0.9900   |
| C(3)-H(3A)   | 0.9500    | C(15)-C(16)  | 1.530(5) |
| C(4)-N(5)    | 1.380(10) | C(15)-H(15A) | 0.9900   |
| C(4)-H(4A)   | 0.9500    | C(15)-H(15B) | 0.9900   |
| N(5)-C(18)   | 1.470(10) | C(16)-C(17)  | 1.529(5) |
| C(6)-C(7)    | 1.526(5)  | C(16)-H(16A) | 0.9900   |
| C(6)-C(17)   | 1.545(5)  | C(16)-H(16B) | 0.9900   |
| C(6)-H(6A)   | 1.0000    | C(17)-H(17A) | 0.9900   |
| C(7)-C(8)    | 1.527(5)  | C(17)-H(17B) | 0.9900   |
| C(7)-H(7A)   | 0.9900    | C(18)-C(19)  | 1.536(5) |
| C(7)-H(7B)   | 0.9900    | C(18)-C(29)  | 1.547(5) |
| C(8)-C(9)    | 1.538(5)  | C(18)-H(18A) | 1.0000   |
| C(8)-H(8A)   | 0.9900    | C(19)-C(20)  | 1.534(5) |
| C(8)-H(8B)   | 0.9900    | C(19)-H(19A) | 0.9900   |
| C(9)-C(10)   | 1.532(5)  | C(19)-H(19B) | 0.9900   |
| C(9)-H(9A)   | 0.9900    | C(20)-C(21)  | 1.544(5) |
| C(9)-H(9B)   | 0.9900    | C(20)-H(20A) | 0.9900   |
| C(10)-C(11)  | 1.530(5)  | C(20)-H(20B) | 0.9900   |
| C(10)-H(10A) | 0.9900    | C(21)-C(22)  | 1.534(5) |
| C(10)-H(10B) | 0.9900    | C(21)-H(21A) | 0.9900   |

| C(21)-H(21B) | 0.9900   | C(29)-H(29A) | 0.9900    |
|--------------|----------|--------------|-----------|
| C(22)-C(23)  | 1.532(5) | C(29)-H(29B) | 0.9900    |
| C(22)-H(22A) | 0.9900   | C(31)-C(32)  | 1.418(12) |
| C(22)-H(22B) | 0.9900   | C(31)-C(38)  | 1.509(12) |
| C(23)-C(24)  | 1.538(5) | C(31)-H(31A) | 0.9500    |
| C(23)-H(23A) | 0.9900   | C(32)-C(33)  | 1.530(12) |
| C(23)-H(23B) | 0.9900   | C(32)-H(32A) | 0.9500    |
| C(24)-C(25)  | 1.534(5) | C(33)-C(34)  | 1.526(12) |
| C(24)-H(24A) | 0.9900   | C(33)-H(33A) | 0.9900    |
| C(24)-H(24B) | 0.9900   | C(33)-H(33B) | 0.9900    |
| C(25)-C(26)  | 1.533(5) | C(34)-C(35)  | 1.499(12) |
| C(25)-H(25A) | 0.9900   | C(34)-H(34A) | 0.9900    |
| C(25)-H(25B) | 0.9900   | C(34)-H(34B) | 0.9900    |
| C(26)-C(27)  | 1.544(5) | C(35)-C(36)  | 1.379(12) |
| C(26)-H(26A) | 0.9900   | C(35)-H(35A) | 0.9500    |
| C(26)-H(26B) | 0.9900   | C(36)-C(37)  | 1.493(12) |
| C(27)-C(28)  | 1.531(5) | C(36)-H(36A) | 0.9500    |
| C(27)-H(27A) | 0.9900   | C(37)-C(38)  | 1.522(13) |
| C(27)-H(27B) | 0.9900   | C(37)-H(37A) | 0.9900    |
| C(28)-C(29)  | 1.534(5) | C(37)-H(37B) | 0.9900    |
| C(28)-H(28A) | 0.9900   | C(38)-H(38A) | 0.9900    |
| C(28)-H(28B) | 0.9900   | C(38)-H(38B) | 0.9900    |

### Table S 10 Bond angles (°) for $[Ir(cod)(Ii\text{-}PrMe)(OH]\ \textbf{(3d)}$

| O(1)-Rh(1)-C(1)   | 89.4(3)  | O(1)-Rh(1)-C(36)  | 89.5(3)  |  |
|-------------------|----------|-------------------|----------|--|
| O(1)-Rh(1)-C(31)  | 157.0(3) | C(1)-Rh(1)-C(36)  | 167.4(3) |  |
| C(1)-Rh(1)-C(31)  | 94.4(3)  | C(31)-Rh(1)-C(36) | 81.8(3)  |  |
| O(1)-Rh(1)-C(32)  | 163.1(3) | C(32)-Rh(1)-C(36) | 90.4(3)  |  |
| C(1)-Rh(1)-C(32)  | 94.2(3)  | C(35)-Rh(1)-C(36) | 36.6(3)  |  |
| C(31)-Rh(1)-C(32) | 39.1(3)  | Rh(1)-O(1)-H(1O)  | 109.5    |  |
| O(1)-Rh(1)-C(35)  | 87.4(3)  | N(2)-C(1)-N(5)    | 104.4(6) |  |
| C(1)-Rh(1)-C(35)  | 155.9(3) | N(2)-C(1)-Rh(1)   | 129.2(6) |  |
| C(31)-Rh(1)-C(35) | 97.8(3)  | N(5)-C(1)-Rh(1)   | 126.3(6) |  |
| C(32)-Rh(1)-C(35) | 82.6(3)  | C(1)-N(2)-C(3)    | 111.0(6) |  |
|                   |          |                   |          |  |

| C(1)-N(2)-C(6)   | 125.5(7)  | C(11)-C(10)-H(10A)  | 109.0     |
|------------------|-----------|---------------------|-----------|
| C(3)-N(2)-C(6)   | 123.3(6)  | C(9)-C(10)-H(10A)   | 109.0     |
| C(4)-C(3)-N(2)   | 106.2(7)  | C(11)-C(10)-H(10B)  | 109.0     |
| C(4)-C(3)-H(3A)  | 126.9     | C(9)-C(10)-H(10B)   | 109.0     |
| N(2)-C(3)-H(3A)  | 126.9     | H(10A)-C(10)-H(10B) | 107.8     |
| C(3)-C(4)-N(5)   | 108.0(7)  | C(10)-C(11)-C(12)   | 120.0(12) |
| C(3)-C(4)-H(4A)  | 126.0     | C(10)-C(11)-H(11A)  | 107.3     |
| N(5)-C(4)-H(4A)  | 126.0     | C(12)-C(11)-H(11A)  | 107.3     |
| C(1)-N(5)-C(4)   | 110.3(7)  | C(10)-C(11)-H(11B)  | 107.3     |
| C(1)-N(5)-C(18)  | 126.2(7)  | C(12)-C(11)-H(11B)  | 107.3     |
| C(4)-N(5)-C(18)  | 123.2(7)  | H(11A)-C(11)-H(11B) | 106.9     |
| C(7)-C(6)-N(2)   | 110.4(8)  | C(13)-C(12)-C(11)   | 107.9(13) |
| C(7)-C(6)-C(17)  | 112.1(9)  | C(13)-C(12)-H(12A)  | 110.1     |
| N(2)-C(6)-C(17)  | 106.5(7)  | C(11)-C(12)-H(12A)  | 110.1     |
| C(7)-C(6)-H(6A)  | 109.2     | C(13)-C(12)-H(12B)  | 110.1     |
| N(2)-C(6)-H(6A)  | 109.2     | C(11)-C(12)-H(12B)  | 110.1     |
| C(17)-C(6)-H(6A) | 109.2     | H(12A)-C(12)-H(12B) | 108.4     |
| C(8)-C(7)-C(6)   | 111.9(9)  | C(14)-C(13)-C(12)   | 111.7(13) |
| C(8)-C(7)-H(7A)  | 109.2     | C(14)-C(13)-H(13A)  | 109.3     |
| C(6)-C(7)-H(7A)  | 109.2     | C(12)-C(13)-H(13A)  | 109.3     |
| C(8)-C(7)-H(7B)  | 109.2     | C(14)-C(13)-H(13B)  | 109.3     |
| C(6)-C(7)-H(7B)  | 109.2     | C(12)-C(13)-H(13B)  | 109.3     |
| H(7A)-C(7)-H(7B) | 107.9     | H(13A)-C(13)-H(13B) | 107.9     |
| C(7)-C(8)-C(9)   | 118.7(9)  | C(13)-C(14)-C(15)   | 116.4(11) |
| C(7)-C(8)-H(8A)  | 107.6     | C(13)-C(14)-H(14A)  | 108.2     |
| C(9)-C(8)-H(8A)  | 107.6     | C(15)-C(14)-H(14A)  | 108.2     |
| C(7)-C(8)-H(8B)  | 107.6     | C(13)-C(14)-H(14B)  | 108.2     |
| C(9)-C(8)-H(8B)  | 107.6     | C(15)-C(14)-H(14B)  | 108.2     |
| H(8A)-C(8)-H(8B) | 107.1     | H(14A)-C(14)-H(14B) | 107.3     |
| C(10)-C(9)-C(8)  | 109.1(10) | C(16)-C(15)-C(14)   | 106.3(11) |
| C(10)-C(9)-H(9A) | 109.9     | C(16)-C(15)-H(15A)  | 110.5     |
| C(8)-C(9)-H(9A)  | 109.9     | C(14)-C(15)-H(15A)  | 110.5     |
| C(10)-C(9)-H(9B) | 109.9     | C(16)-C(15)-H(15B)  | 110.5     |
| C(8)-C(9)-H(9B)  | 109.9     | C(14)-C(15)-H(15B)  | 110.5     |
| H(9A)-C(9)-H(9B) | 108.3     | H(15A)-C(15)-H(15B) | 108.7     |
| C(11)-C(10)-C(9) | 112.9(12) | C(17)-C(16)-C(15)   | 111.3(10) |
|                  |           |                     |           |

| C(17)-C(16)-H(16A)  | 109.4    | C(23)-C(22)-H(22A)  | 109.5     |
|---------------------|----------|---------------------|-----------|
| C(15)-C(16)-H(16A)  | 109.4    | C(21)-C(22)-H(22A)  | 109.5     |
| C(17)-C(16)-H(16B)  | 109.4    | C(23)-C(22)-H(22B)  | 109.5     |
| C(15)-C(16)-H(16B)  | 109.4    | C(21)-C(22)-H(22B)  | 109.5     |
| H(16A)-C(16)-H(16B) | 108.0    | H(22A)-C(22)-H(22B) | 108.0     |
| C(16)-C(17)-C(6)    | 120.0(9) | C(22)-C(23)-C(24)   | 115.2(8)  |
| C(16)-C(17)-H(17A)  | 107.3    | C(22)-C(23)-H(23A)  | 108.5     |
| C(6)-C(17)-H(17A)   | 107.3    | C(24)-C(23)-H(23A)  | 108.5     |
| C(16)-C(17)-H(17B)  | 107.3    | C(22)-C(23)-H(23B)  | 108.5     |
| C(6)-C(17)-H(17B)   | 107.3    | C(24)-C(23)-H(23B)  | 108.5     |
| H(17A)-C(17)-H(17B) | 106.9    | H(23A)-C(23)-H(23B) | 107.5     |
| N(5)-C(18)-C(19)    | 109.0(7) | C(25)-C(24)-C(23)   | 113.0(9)  |
| N(5)-C(18)-C(29)    | 109.3(6) | C(25)-C(24)-H(24A)  | 109.0     |
| C(19)-C(18)-C(29)   | 112.6(8) | C(23)-C(24)-H(24A)  | 109.0     |
| N(5)-C(18)-H(18A)   | 108.6    | C(25)-C(24)-H(24B)  | 109.0     |
| C(19)-C(18)-H(18A)  | 108.6    | C(23)-C(24)-H(24B)  | 109.0     |
| C(29)-C(18)-H(18A)  | 108.6    | H(24A)-C(24)-H(24B) | 107.8     |
| C(20)-C(19)-C(18)   | 113.1(8) | C(26)-C(25)-C(24)   | 113.7(10) |
| C(20)-C(19)-H(19A)  | 109.0    | C(26)-C(25)-H(25A)  | 108.8     |
| C(18)-C(19)-H(19A)  | 109.0    | C(24)-C(25)-H(25A)  | 108.8     |
| C(20)-C(19)-H(19B)  | 109.0    | C(26)-C(25)-H(25B)  | 108.8     |
| C(18)-C(19)-H(19B)  | 109.0    | C(24)-C(25)-H(25B)  | 108.8     |
| H(19A)-C(19)-H(19B) | 107.8    | H(25A)-C(25)-H(25B) | 107.7     |
| C(19)-C(20)-C(21)   | 115.9(8) | C(25)-C(26)-C(27)   | 115.3(9)  |
| C(19)-C(20)-H(20A)  | 108.3    | C(25)-C(26)-H(26A)  | 108.5     |
| C(21)-C(20)-H(20A)  | 108.3    | C(27)-C(26)-H(26A)  | 108.5     |
| C(19)-C(20)-H(20B)  | 108.3    | C(25)-C(26)-H(26B)  | 108.5     |
| C(21)-C(20)-H(20B)  | 108.3    | C(27)-C(26)-H(26B)  | 108.5     |
| H(20A)-C(20)-H(20B) | 107.4    | H(26A)-C(26)-H(26B) | 107.5     |
| C(22)-C(21)-C(20)   | 110.6(8) | C(28)-C(27)-C(26)   | 109.8(8)  |
| C(22)-C(21)-H(21A)  | 109.5    | C(28)-C(27)-H(27A)  | 109.7     |
| C(20)-C(21)-H(21A)  | 109.5    | C(26)-C(27)-H(27A)  | 109.7     |
| C(22)-C(21)-H(21B)  | 109.5    | C(28)-C(27)-H(27B)  | 109.7     |
| C(20)-C(21)-H(21B)  | 109.5    | C(26)-C(27)-H(27B)  | 109.7     |
| H(21A)-C(21)-H(21B) | 108.1    | H(27A)-C(27)-H(27B) | 108.2     |
| C(23)-C(22)-C(21)   | 110.9(8) | C(27)-C(28)-C(29)   | 111.5(8)  |
|                     |          |                     |           |

| C(27)-C(28)-H(28A)  | 109.3    | C(35)-C(34)-H(34A)  | 108.7    |
|---------------------|----------|---------------------|----------|
| C(29)-C(28)-H(28A)  | 109.3    | C(33)-C(34)-H(34A)  | 108.7    |
| C(27)-C(28)-H(28B)  | 109.3    | C(35)-C(34)-H(34B)  | 108.7    |
| C(29)-C(28)-H(28B)  | 109.3    | C(33)-C(34)-H(34B)  | 108.7    |
| H(28A)-C(28)-H(28B) | 108.0    | H(34A)-C(34)-H(34B) | 107.6    |
| C(28)-C(29)-C(18)   | 116.4(7) | C(36)-C(35)-C(34)   | 125.6(8) |
| C(28)-C(29)-H(29A)  | 108.2    | C(36)-C(35)-Rh(1)   | 72.7(5)  |
| C(18)-C(29)-H(29A)  | 108.2    | C(34)-C(35)-Rh(1)   | 107.7(5) |
| C(28)-C(29)-H(29B)  | 108.2    | C(36)-C(35)-H(35A)  | 117.2    |
| C(18)-C(29)-H(29B)  | 108.2    | C(34)-C(35)-H(35A)  | 117.2    |
| H(29A)-C(29)-H(29B) | 107.3    | Rh(1)-C(35)-H(35A)  | 89.7     |
| C(32)-C(31)-C(38)   | 125.9(8) | C(35)-C(36)-C(37)   | 123.1(8) |
| C(32)-C(31)-Rh(1)   | 71.1(5)  | C(35)-C(36)-Rh(1)   | 70.8(5)  |
| C(38)-C(31)-Rh(1)   | 109.1(6) | C(37)-C(36)-Rh(1)   | 111.2(5) |
| C(32)-C(31)-H(31A)  | 117.0    | C(35)-C(36)-H(36A)  | 118.5    |
| C(38)-C(31)-H(31A)  | 117.0    | C(37)-C(36)-H(36A)  | 118.5    |
| Rh(1)-C(31)-H(31A)  | 89.8     | Rh(1)-C(36)-H(36A)  | 88.1     |
| C(31)-C(32)-C(33)   | 122.7(8) | C(36)-C(37)-C(38)   | 112.0(7) |
| C(31)-C(32)-Rh(1)   | 69.8(5)  | C(36)-C(37)-H(37A)  | 109.2    |
| C(33)-C(32)-Rh(1)   | 112.2(6) | C(38)-C(37)-H(37A)  | 109.2    |
| C(31)-C(32)-H(32A)  | 118.7    | C(36)-C(37)-H(37B)  | 109.2    |
| C(33)-C(32)-H(32A)  | 118.7    | C(38)-C(37)-H(37B)  | 109.2    |
| Rh(1)-C(32)-H(32A)  | 88.0     | H(37A)-C(37)-H(37B) | 107.9    |
| C(34)-C(33)-C(32)   | 113.0(7) | C(31)-C(38)-C(37)   | 114.4(7) |
| C(34)-C(33)-H(33A)  | 109.0    | C(31)-C(38)-H(38A)  | 108.7    |
| C(32)-C(33)-H(33A)  | 109.0    | C(37)-C(38)-H(38A)  | 108.7    |
| C(34)-C(33)-H(33B)  | 109.0    | C(31)-C(38)-H(38B)  | 108.7    |
| C(32)-C(33)-H(33B)  | 109.0    | C(37)-C(38)-H(38B)  | 108.7    |
| H(33A)-C(33)-H(33B) | 107.8    | H(38A)-C(38)-H(38B) | 107.6    |
| C(35)-C(34)-C(33)   | 114.3(7) |                     |          |

### Table S 11 Bond Lengths (Å) for [Ir(cod)(IDD)(OH)] (3c)

| Rh(1)-C(1)               | 2.044(3)   | C(10)-H(10C) | 0.9800   |
|--------------------------|------------|--------------|----------|
| Rh(1)-O(1)               | 2.074(3)   | C(11)-C(13)  | 1.519(5) |
| Rh(1)-C(22)              | 2.097(4)   | C(11)-C(12)  | 1.528(5) |
| Rh(1)-C(21)              | 2.131(4)   | C(11)-H(11A) | 1.0000   |
| Rh(1)-C(26)              | 2.185(4)   | C(12)-H(12A) | 0.9800   |
| Rh(1)-C(25)              | 2.198(3)   | C(12)-H(12B) | 0.9800   |
| O(1)-H(1O)               | 0.9798(11) | C(12)-H(12C) | 0.9800   |
| C(1)-N(2)                | 1.362(5)   | C(13)-H(13A) | 0.9800   |
| C(1)-N(5)                | 1.367(5)   | C(13)-H(13B) | 0.9800   |
| N(2)-C(3)                | 1.408(5)   | C(13)-H(13C) | 0.9800   |
| N(2)-C(6)                | 1.481(5)   | C(21)-C(22)  | 1.395(5) |
| C(3)-C(4)                | 1.326(5)   | C(21)-C(28)  | 1.530(5) |
| C(3)-C(9)                | 1.506(5)   | C(21)-H(21A) | 0.9500   |
| C(4)-N(5)                | 1.411(4)   | C(22)-C(23)  | 1.512(6) |
| C(4)-C(10)               | 1.502(5)   | C(22)-H(22A) | 0.9500   |
| N(5)-C(11)               | 1.466(5)   | C(23)-C(24)  | 1.540(6) |
| C(6)-C(8)                | 1.524(5)   | C(23)-H(23A) | 0.9900   |
| C(6)-C(7)                | 1.529(5)   | C(23)-H(23B) | 0.9900   |
| C(6)-H(6A)               | 1.0000     | C(24)-C(25)  | 1.509(6) |
| C(7)-H(7A)               | 0.9800     | C(24)-H(24A) | 0.9900   |
| C(7)-H(7B)               | 0.9800     | C(24)-H(24B) | 0.9900   |
| C(7)-H(7C)               | 0.9800     | C(25)-C(26)  | 1.371(6) |
| C(8)-H(8A)               | 0.9800     | C(25)-H(25A) | 0.9500   |
| C(8)-H(8B)               | 0.9800     | C(26)-C(27)  | 1.515(6) |
| C(8)-H(8C)               | 0.9800     | C(26)-H(26A) | 0.9500   |
| C(9)-H(9A)               | 0.9800     | C(27)-C(28)  | 1.523(6) |
| C(9)-H(9B)               | 0.9800     | C(27)-H(27A) | 0.9900   |
| C(9)-H(9C)               | 0.9800     | C(27)-H(27C) | 0.9900   |
| C(1 <del>0)-H(10A)</del> | 0.9800     | C(28)-H(28C) | 0.9900   |
| С(10)-Н(10В)             | 0.9800     | C(28)-H(28A) | 0.9900   |

### Table S 12 Bond Lengths (Å) for [Ir(cod)(IDD)(OH)] (3c)

| C(1)-Rh(1)-O(1)   | 90.53(13)  | C(8)-C(6)-C(7)      | 112.7(3) |
|-------------------|------------|---------------------|----------|
| C(1)-Rh(1)-C(22)  | 90.56(14)  | N(2)-C(6)-H(6A)     | 106.4    |
| O(1)-Rh(1)-C(22)  | 155.02(15) | C(8)-C(6)-H(6A)     | 106.4    |
| C(1)-Rh(1)-C(21)  | 95.15(14)  | C(7)-C(6)-H(6A)     | 106.4    |
| O(1)-Rh(1)-C(21)  | 165.51(14) | C(6)-C(7)-H(7A)     | 109.5    |
| C(22)-Rh(1)-C(21) | 38.51(15)  | C(6)-C(7)-H(7B)     | 109.5    |
| C(1)-Rh(1)-C(26)  | 161.63(17) | H(7A)-C(7)-H(7B)    | 109.5    |
| O(1)-Rh(1)-C(26)  | 88.90(14)  | C(6)-C(7)-H(7C)     | 109.5    |
| C(22)-Rh(1)-C(26) | 97.64(16)  | H(7A)-C(7)-H(7C)    | 109.5    |
| C(21)-Rh(1)-C(26) | 81.51(15)  | H(7B)-C(7)-H(7C)    | 109.5    |
| C(1)-Rh(1)-C(25)  | 161.88(16) | C(6)-C(8)-H(8A)     | 109.5    |
| O(1)-Rh(1)-C(25)  | 88.72(14)  | C(6)-C(8)-H(8B)     | 109.5    |
| C(22)-Rh(1)-C(25) | 82.64(15)  | H(8A)-C(8)-H(8B)    | 109.5    |
| C(21)-Rh(1)-C(25) | 89.95(15)  | C(6)-C(8)-H(8C)     | 109.5    |
| C(26)-Rh(1)-C(25) | 36.46(16)  | H(8A)-C(8)-H(8C)    | 109.5    |
| Rh(1)-O(1)-H(1O)  | 104(3)     | H(8B)-C(8)-H(8C)    | 109.5    |
| N(2)-C(1)-N(5)    | 105.5(3)   | C(3)-C(9)-H(9A)     | 109.5    |
| N(2)-C(1)-Rh(1)   | 127.9(3)   | C(3)-C(9)-H(9B)     | 109.5    |
| N(5)-C(1)-Rh(1)   | 126.6(3)   | H(9A)-C(9)-H(9B)    | 109.5    |
| C(1)-N(2)-C(3)    | 109.9(3)   | C(3)-C(9)-H(9C)     | 109.5    |
| C(1)-N(2)-C(6)    | 120.8(3)   | H(9A)-C(9)-H(9C)    | 109.5    |
| C(3)-N(2)-C(6)    | 128.7(3)   | H(9B)-C(9)-H(9C)    | 109.5    |
| C(4)-C(3)-N(2)    | 107.4(3)   | C(4)-C(10)-H(10A)   | 109.5    |
| C(4)-C(3)-C(9)    | 128.5(3)   | C(4)-C(10)-H(10B)   | 109.5    |
| N(2)-C(3)-C(9)    | 124.0(3)   | H(10A)-C(10)-H(10B) | 109.5    |
| C(3)-C(4)-N(5)    | 107.5(3)   | C(4)-C(10)-H(10C)   | 109.5    |
| C(3)-C(4)-C(10)   | 128.6(3)   | H(10A)-C(10)-H(10C) | 109.5    |
| N(5)-C(4)-C(10)   | 123.9(3)   | H(10B)-C(10)-H(10C) | 109.5    |
| C(1)-N(5)-C(4)    | 109.6(3)   | N(5)-C(11)-C(13)    | 112.5(3) |
| C(1)-N(5)-C(11)   | 121.7(3)   | N(5)-C(11)-C(12)    | 111.9(3) |
| C(4)-N(5)-C(11)   | 128.8(3)   | C(13)-C(11)-C(12)   | 113.2(3) |
| N(2)-C(6)-C(8)    | 110.9(3)   | N(5)-C(11)-H(11A)   | 106.2    |
| N(2)-C(6)-C(7)    | 113.5(3)   | C(13)-C(11)-H(11A)  | 106.2    |

| C(12)-C(11)-H(11A)  | 106.2    | C(25)-C(24)-C(23)   | 112.9(3) |
|---------------------|----------|---------------------|----------|
| C(11)-C(12)-H(12A)  | 109.5    | C(25)-C(24)-H(24A)  | 109.0    |
| C(11)-C(12)-H(12B)  | 109.5    | C(23)-C(24)-H(24A)  | 109.0    |
| H(12A)-C(12)-H(12B) | 109.5    | C(25)-C(24)-H(24B)  | 109.0    |
| C(11)-C(12)-H(12C)  | 109.5    | C(23)-C(24)-H(24B)  | 109.0    |
| H(12A)-C(12)-H(12C) | 109.5    | H(24A)-C(24)-H(24B) | 107.8    |
| H(12B)-C(12)-H(12C) | 109.5    | C(26)-C(25)-C(24)   | 125.3(4) |
| C(11)-C(13)-H(13A)  | 109.5    | C(26)-C(25)-Rh(1)   | 71.3(2)  |
| C(11)-C(13)-H(13B)  | 109.5    | C(24)-C(25)-Rh(1)   | 110.1(2) |
| H(13A)-C(13)-H(13B) | 109.5    | C(26)-C(25)-H(25A)  | 117.3    |
| С(11)-С(13)-Н(13С)  | 109.5    | C(24)-C(25)-H(25A)  | 117.3    |
| H(13A)-C(13)-H(13C) | 109.5    | Rh(1)-C(25)-H(25A)  | 88.6     |
| H(13B)-C(13)-H(13C) | 109.5    | C(25)-C(26)-C(27)   | 126.0(4) |
| C(22)-C(21)-C(28)   | 122.1(3) | C(25)-C(26)-Rh(1)   | 72.3(2)  |
| C(22)-C(21)-Rh(1)   | 69.4(2)  | C(27)-C(26)-Rh(1)   | 108.7(2) |
| C(28)-C(21)-Rh(1)   | 113.3(2) | C(25)-C(26)-H(26A)  | 117.0    |
| C(22)-C(21)-H(21A)  | 119.0    | C(27)-C(26)-H(26A)  | 117.0    |
| C(28)-C(21)-H(21A)  | 119.0    | Rh(1)-C(26)-H(26A)  | 89.0     |
| Rh(1)-C(21)-H(21A)  | 87.3     | C(26)-C(27)-C(28)   | 112.9(3) |
| C(21)-C(22)-C(23)   | 127.7(3) | C(26)-C(27)-H(27A)  | 109.0    |
| C(21)-C(22)-Rh(1)   | 72.0(2)  | C(28)-C(27)-H(27A)  | 109.0    |
| C(23)-C(22)-Rh(1)   | 108.7(3) | C(26)-C(27)-H(27C)  | 109.0    |
| C(21)-C(22)-H(22A)  | 116.1    | C(28)-C(27)-H(27C)  | 109.0    |
| C(23)-C(22)-H(22A)  | 116.1    | H(27A)-C(27)-H(27C) | 107.8    |
| Rh(1)-C(22)-H(22A)  | 89.2     | C(27)-C(28)-C(21)   | 112.1(3) |
| C(22)-C(23)-C(24)   | 113.1(4) | C(27)-C(28)-H(28C)  | 109.2    |
| C(22)-C(23)-H(23A)  | 108.9    | C(21)-C(28)-H(28C)  | 109.2    |
| C(24)-C(23)-H(23A)  | 109.0    | C(27)-C(28)-H(28A)  | 109.2    |
| C(22)-C(23)-H(23B)  | 109.0    | C(21)-C(28)-H(28A)  | 109.2    |
| C(24)-C(23)-H(23B)  | 109.0    | H(28C)-C(28)-H(28A) | 107.9    |
| H(23A)-C(23)-H(23B) | 107.8    |                     |          |

### References

- 1. A. Millan, M. J. Fernandez, P. Bentz and P. M. Maitlis, J. Mol. Catal., 1984, 26, 89-104.
- 2. H. Aneetha, W. Wu and J. G. Verkade, *Organometallics*, 2005, **24**, 2590-2596.
- 3. J. Li, J. Peng, G. Zhang, Y. Bai, G. Lai and X. Li, *New J. Chem.*, 2010, **34**, 1330.
- 4. M. Rubin, T. Schwier and V. Gevorgyan, J. Org. Chem., 2002, 67, 1936-1940.
- 5. Y. Seki, K. Takeshita, K. Kawamoto, S. Murai and N. Sonoda, *Angew. Chem.*, 1980, **92**, 974-974.
- 6. G. De Bo, G. Berthon-Gelloz, B. Tinant and I. E. Markó, *Organometallics*, 2006, **25**, 1881-1890.
- 7. J. Li, J. Peng, Y. Bai, G. Lai and X. Li, J. Organomet. Chem., 2011, 696, 2116-2121.
- 8. J. Li, J. Peng, Y. Bai, G. Zhang, G. Lai and X. Li, J. Organomet. Chem., 2010, 695, 431-436.
- 9. L. N. Lewis, J. Am. Chem. Soc., 1990, **112**, 5998-6004.
- 10. W. Prukała, M. Majchrzak, C. Pietraszuk and B. Marciniec, *J. Mol. Catal. A: Chemical*, 2006, **254**, 58-63.
- 11. R. Bandari and M. R. Buchmeiser, *Catal. Sci. Technol.*, 2012, **2**.
- 12. W.-G. Zhao and R. Hua, *Eur. J. Org. Chem.*, 2006, **2006**, 5495-5498.
- 13. S. Schwieger, R. Herzog, C. Wagner and D. Steinborn, *J. Organomet. Chem.*, 2009, **694**, 3548-3558.
- 14. A. Hamze, O. Provot, J.-D. Brion and M. Alami, *J. Organomet. Chem.*, 2008, **693**, 2789-2797.