Supporting Information

Pentaquinone based Probe for Nanomolar Detection of Zinc Ion: Chemosensing Ensemble as Antioxidant

Vandana Bhalla,* Roopa, and Manoj Kumar*

Department of Chemistry, UGC Sponsored-Centre for Advanced Studies-I, Guru Nanak Dev University, Amritsar-143005, Punjab, INDIA

Contents

- Page 1General Experimental Methods
- **Figure S1** ¹H NMR spectrum of receptor **3a**.
- Figure S2 Mass spectrum of receptor 3a.
- Figure S3 IR spectrum of receptor 3a.
- Figure S4 UV-vis spectra of 3a in the presence of different metal ions in THF.
- Figure S5 Calculations for the detection limit.
- **Figure S6** Job's Plot of **3a** with Zn^{2+} ions in THF.
- Figure S7 IR spectrum of [3a-Zn] complex.
- Figure S8 Mass spectrum of [3a-Zn] complex.
- Figure S9 Fluorescence spectra of 3a in the presence of different metal ions in THF.
- **Figure S10** ¹H NMR spectrum of receptor **3b**.
- Figure S11 Mass spectrum of receptor 3b.
- Figure S12 Fluorescence spectrum of receptor 3b.
- **Figure S13** Fluorescence response of **3b** towards Zn^{2+} ions in THF.

Figure S14-S15 Fluorescence emission spectra of 2a on addition of H_2O_2 in presence TP and PG in THF.

Figure S16-S17 Fluorescence emission spectra of 2a on addition of H_2O_2 in presence **BHT** and **BHA** in THF.

Figure S18 Fluorescence emission spectra of 2a on addition of H_2O_2 in presence SA in THF.

Figure S19 Calculation for anti-oxidation activity.

Figure S20. Comparison of receptor 3a with Zn^{2+} sensors reported in the literature.

General Experimental Methods

Quantum yield

Florescence quantum yield¹ was determined using optically matching solutions of diphenylanthracene ($\Phi_{fr} = 0.9$ in ethanol) as standard at an excitation wavelength of 360 nm and quantum yield is calculated using the equation:

 $\Phi_{fs} = \Phi_{fr} \times (1\text{-}10^{\text{-}ArLr}/1\text{-}10^{\text{-}AsLs}) \times (N_s^2/N_r^2) \times (D_s/D_r)$

 Φ_{fs} and Φ_{fr} are the radiative quantum yields of sample and the reference respectively, As and Ar are the absorbance of the sample and the reference respectively, D_s and D_r the respective areas of emission for sample and reference. Ls and Lr are the lengths of the absorption cells of sample and reference respectively. N_s and N_r are the refractive indices of the sample and reference solutions (pure solvents were assumed) respectively.

Calculation of Anti-oxidation activity

Oxidation (O) % = $(I_0 - I_i / I_0 - I_c) \times 100$

Where I_i = Fluorescence intensity of β -hydroxy naphthaldehyde in the presence of the **3a**-Zn + H₂O₂ or in the presence of the **PG** + H₂O₂.

 I_0 = Fluorescence intensity of β -hydroxy naphthaldehyde in the absence of any analyte.

 I_c = Fluorescence intensity of β -hydroxy naphthaldehyde in the presence of H_2O_2 .

Anti-oxidation activity A = (100-O) %

¹ J. N. Deams, G. A. Grosby, J. Phys. Chem., 1971, 75, 991.

Figure S2. IR spectrum of 3a.

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is O The Royal Society of Chemistry 2013

Figure S3. MALDI-TOF mass of 3a.

(10 equiv each) in THF.

To determine the detection limit,² fluorescence titration of compound **3a** with zinc ions was carried out by adding aliquots of zinc solution of minimum concentration and the fluorescence intensity as a function of Zn^{2+} ions added was then plotted.

Equation used for calculating detection limit (DL):

 $DL \ = \ 5 \times 10^{-6} \ \times \ 0.007 = \ 0.0035 \times 10^{-6} \ = \ 3.5 \times 10^{-9}$

or = 3.5 nanomolar

². G. L. Long; J. D. Winefordner, Anal. Chem., 1983, 55, 712A.

Figure S6. Job's plot of **3a** with Zn^{2+} ions in THF representing stiochiometry 1:1.

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is O The Royal Society of Chemistry 2013

Figure S7. IR spectrum of 3a-Zn.

Figure S8. MALDI-TOF mass of 3a-Zn.

Figure S9. Fluorescence response of 3a (5 μ M) in the presence of various metal ions (0-1.0 equiv) in THF.

Figure S10. ¹H NMR (CDCl₃, 300 MHz, ppm) spectrum of **3b**.

Figure S11. Mass spectrum of 3b.

Figure S12. Fluorescence spectrum of 3b (5 $\mu M)$ in THF.

Figure S13. Fluorescence response of 3b (5 μ M) in the presence of Zn²⁺ ions (0-50 equiv.) in THF.

Figure S14. Fluorescence spectra of β -hydroxy naphthaldehyde (3 μ M) on addition of H₂O₂ (183 μ M) in presence of 2 μ M of **TP** in THF.

Figure S15. Fluorescence spectra of β -hydroxy naphthaldehyde (3 μ M) on addition of H₂O₂ (183 μ M) in presence of 2 μ M of **PG** in THF.

Figure S16. Fluorescence spectra of β -hydroxy naphthaldehyde (3 μ M) on addition of H₂O₂ (95 μ M) in presence of 2 μ M of BHA in THF.

naphthaldehyde (3 $\mu M)$ on addition of H_2O_2 (95

 $\mu M)$ in presence of 2 μM of \boldsymbol{SA} in THF.

Figure S19. Calculation of anti-oxidation activity

The method of measurement of anti-oxidation activity can be explained as follows:

Oxidation (**O**) % = $(I_0 - I_i / I_0 - I_c) \times 100$

Where I_i = Fluorescence intensity of β -hydroxy naphthaldehyde in the presence of the **3a**-Zn + H₂O₂ or in the presence of the **PG** + H₂O₂.

 I_0 = Fluorescence intensity of β -hydroxy naphthaldehyde in the absence of any analyte.

 I_c = Fluorescence intensity of β -hydroxy naphthaldehyde in the presence of H_2O_2 .

Anti-oxidation activity $\mathbf{A} = (100 - \mathbf{O}) \%$.

For 3a-Zn

(O) % =
$$[(80.2-62.77)/(80.2-10.74)] \times 100$$

= 0.25 × 100
= 25.09
A = (100-O) % = 74.91

For PG

(**O**) % = $[(80.2-48.79)/(80.2-10.74)] \times 100$ = 45.22 **A** = (100-**O**) % = 54.78

For TP

(O) % = $[(80.2-48.95)/(80.2-10.74)] \times 100$ = 44.98 A = (100-O) % = 55.02

For BHT

(O) % = $[(80.2-43.005)/(80.2-10.74)] \times 100$ = 0.5354 × 100 = 53.54 A = (100-O) % = 46.46

For BHA

(O) % = $[(80.2-24.57)/(80.2-10.74)] \times 100$ = 80.08 A = (100-O) % = 19.9

For SA

(O) % = $[(80.2-23.97)/(80.2-10.74)] \times 100$ = 80.95 A = (100-O) % = 19.05

S. No.	Reference	Selectivity/ interference	Detection limit	Peroxide detection with Zn ²⁺ ensemble
1	T. Mukherjee, J. C. Pessoa, A. Kumar, A. R. Sarkar, <i>Dalton Trans.</i> , 2012, 41 , 5260.	Responds to Cr^{3+} and Cd^{2+} also.	$40 \times 10^{-5} \mathrm{M}$	NO
2	S. Kotha, D. Goyal, S. Banerjee, A. Datta, <i>Analyst</i> , 2012, 137 , 2871.	Responds to Hg^{2+} and Cd^{2+} also.	$34 \times 10^{-8} \mathrm{M}$	NO
3	M. Chen, X. Lv, Y. Liu, Y. Zhao, J. Liu, P. Wang, W. Guo, <i>Org. Biomol. Chem.</i> , 2011, 9 , 2345.	Interference of Cu^{2+} , Co^{2+} and Ni^{2+} .	$36 \times 10^{-7} \mathrm{M}$	NO
4	F. Zapata, A. Caballero, A. Espinosa, A. Tarraga, P. Molina, <i>Inorganic Chemistry</i> , 2009, 48 , 11566.	Responds to Hg ²⁺ also.	~10 ⁻⁶ M	NO
5	 J. F. Zhang, S. Kim, J. H. Han, S. J. Lee, T. Pradhan, Q. Y. Cao, S. J. Lee, C. Kang, J. S. Kim, <i>Org. Lett.</i>, 2011, 13, 5294. 	Responds to Hg ²⁺ and Cd ²⁺ also.	$15 \times 10^{-6} \mathrm{M}$	NO
6	Y. Mikata, A. Yamashita, A. Kawamura, H. Kinno, Y. Miyamoto, S. Tamotsu, <i>Dalton Trans</i> , 2009, 3800.	Responds to Cd ²⁺ also.	*	NO
7	Z. Xu, K. H. Baek, H. N. Kim, J. Cui, X. Qian, D. R. Spring, I. Shin, J. Yoon, J. Am. Chem. Soc. 2010, 132 , 601.	Responds to Cd ²⁺ also.	*	NO
8	S. Atilgan, T. Ozdemir, E. U. Akkaya, <i>Org. Lett.</i> , 2008, 10 , 4065.	Responds to Hg^{2+} and Cd^{2+} also.	*	NO
9	L. E. Mcquade, S. J. Lippard, Inorg. Chem., 2010, 49 , 9535.	Responds to Cd ²⁺ also.	*	NO
10	X. Y. Chen, J. Shi, Y. M. Li, F. L. Wang, X. Wu, Q. X.	Responds to Cd ²⁺ also.	*	NO

Figure S20. Comparison of receptor 3a with Zn²⁺ sensors reported in the literature

	Guo, L. Liu, Org. Lett., 2009,			
	11 , 19, 4426.			
11	Y. Xu, Y. Pang, Dalton	Respond to Hg ²⁺	*	NO
	Trans., 2011, 40, 1503.	and Cu ²⁺ also.		
12	V. Bhalla, H. Arora, A. Dhir,	Responds to Zn ²⁺	10 ⁻⁶ M	YES
	M. Kumar, Chem. Commun.,			
	2012, 48 , 4722.			
	(Report from our lab)			
13	Receptor 3a	Highly selective	$3.5 \times 10^{-9} \mathrm{M}$	YES
		to Zn ²⁺ ion and		
		no interference		
		with other metal		
		ions.		

* No data available