Electronic Supplementary Information

Chemical precursor for depositing Sb₂S₃ onto mesoporous TiO₂ layers in nonaqueous media and its application to solar cell

Nilkamal Maiti, Sang Hyuk Im, Choong-Sun Lim, and Sang Il Seok

Experimental

X-ray crystal structure determination

A crystal of dimensions 0.23 X 0.20 X 0.14 mm was mounted on a Bruker Smart Apex-II CCD X-ray diffractometer equipped with a Mo-target X-ray tube (λ =0.71073 Å) operated at 50 kV, 30 mA. The X-ray intensities were measured at 100(1) K with liquid N₂ stream and were integrated with the Bruker SAINT software package¹ with a narrow frame algorithm. The integration of the data yielded a total of 17139 reflections to a maximum 20 value of 56.56° of which 2956 were independent and 2820 were greater than $2\sigma(I)$. The final cell constants (Table 1S) were based on the xyz centroids of 9985 reflections above $10\sigma(I)$. The data were processed with SADABS¹ and corrected for absorption. The structure was solved and refined with the Bruker SHELXTL (version 2008) software package,² using the space group Pbca with Z=8 for the formula SbCl₃C₄H₁₀N₂S₂. All non-hydrogen atoms were refined anisotropically with the hydrogen placed in idealized positions. Full matrix least-squares refinement based on F² converged at R1 = 0.0142 and wR2=0.0311 [based on *I*>2sigma(*I*)], R1=0.0154 and wR2 = 0.0315 for all data.

Device fabrication

An 50–nm-thick dense TiO₂ blocking layer (bl-TiO₂) was deposited on FTO (Fluorine doped SnO₂) glass (TEC8, Pilkington) by the spray pyrolysis deposition (SPD) of 0.02 M titanium diisopropoxide bis(acetylacetonate) solution to prevent direct contact between FTO and P3HT (Poly-3-hexylthiophene) hole transporting material. Then, 1.0 μ m-thick mesoscopic TiO₂ (particle size = ~ 50 nm, anatase phase) layer was screen printed on the bl-TiO₂ and sintered at 500 °C for 1 h. The junction among the nanocrystalline TiO₂ particles was modified by immersing the mesoscopic TiO₂ film into a 20 mM of TiCl₄ aqueous solution for 12 h and sintering at 500 °C for 30 min. The Sb₂S₃ sensitizer was deposited by chemical bath deposition (CBD) by dipping the mesoscopic TiO₂ film into chemical bath of non-aqueous medium at certain condition described in Table 2. The orange-colored amorphous Sb₂S₃ film was then annealed at 300 °C in Ar atmosphere for 30 min. The P3HT/1,2 dichlorobenzene solution (15 mg/1 ml) was spin-coated on the Sb₂S₃/mesoscopic TiO₂ film at 2500 rpm for 60 s, and

annealed at 90 °C in a vacuum oven for 40 min. The Au counter electrode was deposited by thermal evaporation under a pressure of 5×10^{-6} Torr. The active device area was fixed to 16 mm².

Device characterization

The current density-voltage (J-V) curves were measured at 1 sun illumination (AM 1.5 global, 100 mW/cm²) with a solar simulator (Newport, Class A, 91195A), a Keithley 2420 sourcemeter, and a calibrated Si reference cell (certified by NREL). The external quantum efficiency (EQE) spectra were measured by home-designed system using a light source (300 W Xe lamp, Newport, 66902), a monochromator (Newport Cornerstone 260), and a multimeter (Keithley 2002). All measurements were conducted by masking the cells with a 9.6 mm² metal mask on active area.

Identification code	20100810lt2_0ma	
Empirical formula	C4 H10 Cl3 N2 S2 Sb	
Formula weight	378.36	
Temperature	100(1) K	
Wavelength	0.71073 Å	
Crystal system	Orthorhombic	
Space group	Pbca	
Unit cell dimensions	a = 10.3812(1) Å	= 90°.
	b = 8.3211(1) Å	= 90°.
	c = 27.6752(3) Å	= 90°.
Volume	2390.67(5) Å ³	
Z	8	
Density (calculated)	2.102 Mg/m ³	
Absorption coefficient	3.283 mm ⁻¹	
F(000)	1456	
Crystal size	0.23 x 0.20 x 0.14 mm ³	
Theta range for data collection	1.47 to 28.29°.	
Index ranges	-10<=h<=13, -11<=k<=9, -34<=l<=36	
Reflections collected	17139	
Independent reflections	2956 [R(int) = 0.0185]	
Completeness to theta = 28.29°	99.7 %	
Absorption correction	Multi-scan	

Table S1. Crystal data and structure refinement for Sb(III)(TA)₂Cl₃.

Max. and min. transmission	0.6565 and 0.5190
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	2956 / 0 / 110
Goodness-of-fit on F ²	1.121
Final R indices [I>2sigma(I)]	R1 = 0.0142, wR2 = 0.0311
R indices (all data)	R1 = 0.0154, wR2 = 0.0315
Extinction coefficient	0.00091(5)
Largest diff. peak and hole	0.481 and -0.293 e.Å ⁻³

Table S2. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters (Å²x 10³) for Sb(III)(TA)₂Cl₃. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	Х	У	Z	U(eq)
Sb	4280(1)	8190(1)	8680(1)	11(1)
Cl(1)	5298(1)	10712(1)	8871(1)	15(1)
Cl(2)	6393(1)	6849(1)	8701(1)	16(1)
Cl(3)	3304(1)	4639(1)	8694(1)	17(1)
S(1)	4366(1)	7969(1)	9670(1)	17(1)
C(1)	3022(1)	6943(2)	9840(1)	14(1)
C(2)	3066(2)	5963(2)	10292(1)	21(1)
N(1)	1960(1)	7006(2)	9596(1)	19(1)
S(11)	4840(1)	9251(1)	7775(1)	16(1)
C(11)	3801(1)	8247(2)	7408(1)	14(1)
C(12)	2750(1)	7202(2)	7599(1)	16(1)
N(11)	3899(1)	8401(2)	6941(1)	20(1)

Sb-Cl(1)	2.4086(4)
Sb-Cl(2)	2.4618(4)
Sb-S(11)	2.7206(4)
Sb-S(1)	2.7474(4)
S(1)-C(1)	1.7025(15)
C(1)-N(1)	1.2954(19)
C(1)-C(2)	1.493(2)
C(2)-H(2A)	0.9600
C(2)-H(2B)	0.9600
C(2)-H(2C)	0.9600
N(1)-H(1A)	0.8600
N(1)-H(1B)	0.8600
S(11)-C(11)	1.7005(15)
C(11)-N(11)	1.3011(19)
C(11)-C(12)	1.493(2)
C(12)-H(12A)	0.9600
C(12)-H(12B)	0.9600
C(12)-H(12C)	0.9600
N(11)-H(11A)	0.8600
N(11)-H(11B)	0.8600
Cl(1)-Sb-Cl(2)	89.930(13)
Cl(1)-Sb-S(11)	79.963(12)
Cl(2)-Sb-S(11)	88.732(12)
Cl(1)-Sb-S(1)	79.917(12)
Cl(2)-Sb-S(1)	85.284(12)
S(11)-Sb-S(1)	158.998(12)
C(1)-S(1)-Sb	106.41(5)
N(1)-C(1)-C(2)	119.08(13)
N(1)-C(1)-S(1)	122.19(12)
C(2)-C(1)-S(1)	118.72(11)
C(1)-C(2)-H(2A)	109.5
C(1)-C(2)-H(2B)	109.5
H(2A)-C(2)-H(2B)	109.5

Table S3	. Bond lengths [Å]] and angles [[°] for Sb(III)	$(TA)_2Cl_3$.

C(1)-C(2)-H(2C)	109.5
H(2A)-C(2)-H(2C)	109.5
H(2B)-C(2)-H(2C)	109.5
C(1)-N(1)-H(1A)	120.0
C(1)-N(1)-H(1B)	120.0
H(1A)-N(1)-H(1B)	120.0
C(11)-S(11)-Sb	104.81(5)
N(11)-C(11)-C(12)	117.81(14)
N(11)-C(11)-S(11)	119.68(12)
C(12)-C(11)-S(11)	122.50(11)
C(11)-C(12)-H(12A)	109.5
C(11)-C(12)-H(12B)	109.5
H(12A)-C(12)-H(12B)	109.5
C(11)-C(12)-H(12C)	109.5
H(12A)-C(12)-H(12C)	109.5
H(12B)-C(12)-H(12C)	109.5
C(11)-N(11)-H(11A)	120.0
C(11)-N(11)-H(11B)	120.0
H(11A)-N(11)-H(11B)	120.0

Symmetry transformations used to generate equivalent atoms:

References

1. Bruker, (2005), APEX 2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin,

USA.

2. G. M. Sheldrick, Acta Cryst. 2008, A64, 112-122.