Electronic Supporting Information

Novel tetracarboxylatoplatinum(IV) complexes as carboplatin prodrugs

Hristo P. Varbanov, Seied M. Valiahdi, Christian R. Kowol, Michael A. Jakupec, Mathea S.

Galanski*, and Bernhard K. Keppler*

University of Vienna, Institute of Inorganic Chemistry, Waehringer Strasse 42, A-1090

Vienna, Austria

Contents

page S2	Figure S1 with the ORTEP diagram of 4.
page S3	Figure S2 with concentration-effect curves of investigated compounds
	in CH1 cells.
page S4	Figure S3 with chemical structures of complexes $3f$ and $M1$
page S4	Figure S4 with the time dependent reduction of $M1$ and $3f$ in the
	presence of ascorbic acid.
page S5	Figure S5 with ¹ H NMR spectra of complex M1 after addition of
	ascorbic acid.
page S6	Figure S6 with ¹ H NMR spectra of complex 3f after addition of
	ascorbic acid.
page S6	Table S1 with the comparison of redox potentials, halve life times of
	reduction by ascorbic acid and cytotoxicity for complexes M1 and 3f.

Fig. S1. ORTEP diagram of 4 displaying thermal ellipsoids at 55% probability level.

Fig. S2. Concentration–effect curves (means \pm standard deviations) of investigated compounds in CH1 cells (MTT assay, exposure time 96 h).

Fig. S3. Chemical structures of complexes 3f and M1

Fig. S4. Time dependent reduction of **M1** (top) and **3f** (bottom) in the presence of ascorbic acid; ambient temperature, pD = 7.4, 1 mM complex, 50 mM phosphate buffer, 25 mM ascorbic acid.

Fig. S5. ¹H NMR spectra of complex **M1** after addition of ascorbic acid (top – immediately, middle – after 5 hours, bottom – after 17 h); ambient temperature, pD = 7.4, 1 mM complex, 50 mM phosphate buffer, 25 mM ascorbic acid.

Fig. S6. ¹H NMR spectra of complex **3f** after addition of ascorbic acid (top – immediately, middle – after 3 days, bottom – after 23 days); ambient temperature, pD =7.4, 1 mM complex, 50 mM phosphate buffer, 25 mM ascorbic acid

Table S1. Comparison of redox potential	s, halve life times	s of reduction by	y ascorbic a	cid and
cytotoxicity for complexes M1 and 3f.				

compound	Ep (V)	t _{1/2}	IC ₅₀ (CH1), µM	IC ₅₀ (SW480), µM
M1	-0.60	5 h	2.3±1.1 ^a	31±15 ^a
3f	-0.68	21 d	44 ± 8	>500

^a data, taken from ref.¹

¹ M.R. Reithofer, S.M. Valiahdi, M.A. Jakupec, V.B. Arion, A. Egger, M. Galanski, B.K. Keppler, *J. Med. Chem.*, 2007, **50**, 6692–6699.