Electronic Supplementary Information

Structure and stability range of a hexanuclear Th(IV) – glycine complex

Christoph Hennig^{a,b,*}, Shinobu Takao^c, Koichiro Takao^d, Stephan Weiss^a, Werner Kraus^e, Franziska Emmerling^e, Andreas C. Scheinost^{a,b}

^a Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstr. 400, D-01314 Dresden, Germany

^b The Rossendorf Beamline at ESRF, BP 220, F-38000 Grenoble, France

^c Department of Engineering Science, University of Electro-Communications, Chofu, Tokyo 182-8585, Japan

^d Department of Materials and Life Science, Seikei University, 3-3-1, Kichijoji-

kitamachi, Musashino-shi, Tokyo 180-8633, Japan.

^e BAM Federal Institute for Materials Research and Testing, Richard-Willstätter-Str. 11, D-12489 Berlin, Germany

*corresponding author, Email: hennig@esrf.fr, Tel.: +33 (0)476 88 2005

Figure S1: Equilibrium reaction of glycine (top) and species distribution in aqueous solution (bottom) with 1 M glycine, I = 1 M, $t = 25^{\circ}$ C. The pK_a values are: pK_{COOH} = 2.34, pK_{NH2} = 9.60 at 25°C.

Figure S2. Th L_3 -edge k^3 -weighted EXAFS data of 0.05 M Th(IV) in 1 M glycine at pH 4.0 (black). In superposition are the scattering amplitude functions of the oxygen (blue) and thorium (red). The low *k*-range oxygen (and carbon) dominates the $\chi(k)$, whereas thorium dominates in the high *k*-range. A restriction of $\chi(k)$ to lower *k*-values promotes the light scattering atoms in the data fit procedure.

Figure S3: Ortep drawing of **1**, $[Th_6(\mu_3-O)_4(\mu_3-OH)_4(H_2O)_6(Gly)_6(HGly)_6]$ (NO₃)₃(ClO₄)₃(H₂O)₃ with atom labeling used in Table S1.

Table S1: Bond lengths [Å	and angles [deg] of 1 .
---------------------------	--------------------------------

Th(1)-O(20)#1	2.307(6)
Th(1)-O(18)	2.335(5)
Th(1) - O(1)	2.482(8)
Th(1)-0(17)	2.501(6)
Th(1)-O(19)#1	2.503(6)
Th(1)-O(13)	2.524(5)
Th(1)-0(11)	2.522(6)
Th(1)-O(7)	2.601(7)
Th(1)-O(9)	2.708(7)
Th(1)-Th(3)#1	3.9366(8)
Th(1)-Th(4)	3.9416(7)
Th(1)-Th(3)	3.9481(8)

Th $(2) - O(18)$ Th $(2) - O(2)$ Th $(2) - O(2)$ Th $(2) - O(2)$ # Th $(2) - O(2)$ # Th $(2) - O(19)$ Th $(2) - O(19)$ Th $(2) - O(3)$ # Th $(2) - O(3)$ Th $(2) - O(3)$ Th $(2) - O(14)$ Th $(2) - Th (1)$ Th $(2) - Th (3)$ Th $(3) - O(20)$ Th $(3) - O(18)$ Th $(3) - O(5)$ Th $(3) - O(12)$	#1 1 #1 1 #1
Th $(3) - O(4)$ Th $(3) - O(10)$ Th $(3) - O(10)$ Th $(3) - O(17)$ Th $(3) - O(15)$ Th $(3) - Th (1)$ Th $(3) - Th (1)$ Th $(4) - O(20)$ Th $(4) - O(20)$ Th $(4) - O(20)$ Th $(4) - O(6)$ Th $(4) - O(6)$ Th $(4) - O(6)$ Th $(4) - O(6)$ Th $(4) - O(8)$ Th $(4) - O(17)$ Th $(4) - O(17)$ Th $(4) - O(17)$ Th $(4) - O(16)$ Th $(4) - Th (1)$ Th $(4) - Th (3)$ C $(1) - O(2)$ C $(1) - O(1)$	#1 #1 1 :1 #1 #1 #1
C(1) - C(2) $C(3) - O(3)$ $C(3) - O(4)$ $C(3) - C(4)$ $C(4) - N(2)$ $C(5) - O(5)$ $C(5) - O(6)$ $C(5) - C(6)$ $C(6) - N(3)$ $C(7) - O(8)$ $C(7) - O(8)$ $C(7) - C(8)$ $C(8) - N(4)$ $C(9) - O(10)$ $C(9) - O(10)$ $C(9) - O(10)$ $C(9) - O(10)$ $C(10) - N(5)$ $C(12) - O(12)$ $C(12) - O(12)$ $C(12) - C(11)$.1

2.259(6)	
2.259(6)	
2507(7)	
2.507(7)	
2.507(7)	
2.525(5)	
2.525(5)	
2.546(6)	
2.546(6)	
2.708(11)	
3.9506(7)	
3.9535(7)	
2.297(6)	
2 318(5)	
2.310(3)	
2.400(7)	
2.502(7)	
2.503(7)	
2.514(6)	
2.518(6)	
2.525(6)	
2.712(6)	
3.9366(8)	
3.9461(7)	
2 297(6)	
2 297(6)	
2.297(0)	
2.456(6)	
2.456(6)	
2.486(7)	
2.486(7)	
2.538(6)	
2.538(6)	
2.676(9)	
3.9416(7)	
3 9461 (7)	
1 208(14)	
1.200(14)	
1.289(14)	
1.55(2)	
1.59(2)	
1.208(12)	
1.315(13)	
1.543(17)	
1.381(18)	
1.223(13)	
1.345(11)	
1 572(16)	
$1 \ 121 \ (17)$	
1, 121(17)	
1.255(12)	
1.265(11)	
1.49/(15)	
1.418(15)	
1.215(12)	
1.245(10)	
1.520(11)	
1.376(14)	
1.232(9)	
1 279/121	
1 510(10)	
1 (10)	
1 69(/)	

C (2) $-N(1)$ C (11) $-N(6)$ C (2') $-N(1')$ C (11') $-N(6')$ O (13) $-C(9) #1$ O (19) $-Th(1) #1$ O (20) $-Th(1) #1$ N (7) $-O(23)$ N (7) $-O(23)$ N (7) $-O(22)$ N (7) $-O(21)$ N (8) $-O(24)$ N (8) $-O(24)$ N (8) $-O(26)$ N (8) $-O(25)$ N (9) $-O(29)$ N (9) $-O(29)$ N (9) $-O(29)$ N (9) $-O(27)$ N (9) $-O(28)$ Cl (1) $-O(33)$ Cl (1) $-O(33)$ Cl (1) $-O(32)$ Cl (1) $-O(31)$ Cl (2) $-O(37)$ Cl (2) $-O(36)$ Cl (2) $-O(34)$ Cl (2) $-O(35)$ Cl (3) $-O(40)$ Cl (3) $-O(41)$ Cl (3) $-O(39)$	1.698(19) $1.490(13)$ $1.696(19)$ $1.488(14)$ $1.245(10)$ $2.503(6)$ $2.307(6)$ $1.225(7)$ $1.233(7)$ $1.233(7)$ $1.221(7)$ $1.221(7)$ $1.221(7)$ $1.227(8)$ $1.220(8)$ $1.220(8)$ $1.222(7)$ $1.438(6)$ $1.442(7)$ $1.451(7)$ $1.451(7)$ $1.451(7)$ $1.451(7)$ $1.451(7)$ $1.451(7)$ $1.451(7)$ $1.451(7)$ $1.451(7)$ $1.452(7)$ $1.454(7)$ $1.454(7)$ $1.454(6)$
O(20) #1-Th(1) -O(18) O(20) #1-Th(1) -O(1) O(18) -Th(1) -O(1) O(20) #1-Th(1) -O(17) O(1) -Th(1) -O(17) O(1) -Th(1) -O(17) O(20) #1-Th(1) -O(19) #1 O(1) -Th(1) -O(19) #1 O(1) -Th(1) -O(19) #1 O(17) -Th(1) -O(19) #1 O(20) #1-Th(1) -O(13) O(18) -Th(1) -O(13) O(18) -Th(1) -O(13) O(19) #1-Th(1) -O(13) O(17) -Th(1) -O(13) O(19) #1-Th(1) -O(11) O(18) -Th(1) -O(11) O(19) #1-Th(1) -O(11) O(19) #1-Th(1) -O(11) O(19) #1-Th(1) -O(11) O(13) -Th(1) -O(11) O(13) -Th(1) -O(7) O(1) -Th(1) -O(7) O(1) -Th(1) -O(7) O(13) -Th(1) -O(7) O(11) -Th(1) -O(7)	87.1(2) 141.3(2) 80.1(2) 69.60(18) 69.9(2) 136.02(19) 69.3(2) 68.17(18) 72.0(2) 121.48(19) 81.1(2) 139.7(2) 85.6(2) 137.7(2) 71.62(19) 139.7(2) 83.0(2) 74.9(2) 70.3(2) 139.0(2) 129.0(2) 81.9(2) 143.00(18) 128.2(2) 73.16(18) 137.13(18) 73.07(19) 83.0(2)

O(20)#1-Th(1)-O(9)	138.1(2)
O(18)-Th(1)-O(9)	134.9(2)
O(1)-Th(1)-O(9)	64.2(2)
O(17)−Th(1)−O(9)	118.2(2)
O(19)#1−Th(1)−O(9)	120.3(2)
O(13)-Th(1)-O(9)	66.65(19)
O(11)-Th(1)-O(9)	62.39(18)
O(7)−Th(1)−O(9)	64.0(2)
O(20)#1-Th(1)-Th(3)#1	31.16(14)
O(18)-Th(1)-Th(3)#1	79.75(15)
O(1)-Th(1)-Th(3)#1	110.17(17)
O(17)-Th(1)-Th(3)#1	95.57(13)
O(19) #1-Th(1)-Th(3) #1	38.51(14)
O(13) - Th(1) - Th(3) #1	70.27(16)
O(11) - Th(1) - Th(3) #1	160.74(14)
O(7) - Th(1) - Th(3) #1	105.94(14)
O(9) - Th(1) - Th(3) #1	136.83(11)
O(20) #I - Th(1) - Th(4)	31.06(13)
O(18) - Th(1) - Th(4)	80.60(15)
O(1) - Th(1) - Th(4)	159.76(18)
O(1/) - Th(1) - Th(4)	38.88(13)
O(19) #I - Tn(1) - Tn(4)	95.16(14) 105.56(16)
O(13) - Tn(1) - Tn(4)	105.56(16)
O(11) - Tn(1) - Tn(4)	IU8.63(I6)
O(7) = In(1) = In(4)	/1.81(14) 125 56(17)
O(9) - III(1) - III(4) mb (2) #1 mb (1) mb (4)	135.56(17)
TH(3) #1 - TH(1) - TH(4)	60.118(10) 90.49(12)
O(20) #I = In(1) = In(3)	80.48(13)
O(10) = III(1) = III(3) O(1) = Th(1) = Th(3)	10/ 59(15)
O(17) = Th(1) = Th(3)	$38 \ 43(14)$
$O(19) \pm 1 - Tb(1) - Tb(3)$	95 02(12)
O(13) = Th(1) = Th(3)	$160 \ 17(16)$
O(11) - Th(1) - Th(3)	70, 67(14)
O(7) - Th(1) - Th(3)	$111 \ 23(12)$
O(9) - Th(1) - Th(3)	133.06(11)
Th(3) #1-Th(1)-Th(3)	90.109(15)
Th(4) - Th(1) - Th(3)	60.021(11)
O(18) - Th(2) - O(18) #1	86.6(3)
O(18) - Th(2) - O(2)	80.6(2)
O(18) #1-Th(2) -O(2)	140.4(2)
O(18) - Th(2) - O(2) #1	140.4(2)
O(18) #1-Th(2)-O(2) #1	80.6(2)
O(2) - Th(2) - O(2) # 1	130.7(3)
O(18)-Th(2)-O(19)#1	68.90(18)
O(18) #1-Th(2)-O(19) #1	68.6(2)
O(2)-Th(2)-O(19)#1	71.8(2)
O(2)#1-Th(2)-O(19)#1	136.7(2)
O(18)-Th(2)-O(19)	68.6(2)
O(18)#1−Th(2)−O(19)	68.90(18)
O(2)-Th(2)-O(19)	136.7(2)
O(2) #1−Th(2) −O(19)	71.8(2)
O(19)#1-Th(2)-O(19)	120.3(3)
O(18)-Th(2)-O(3)#1	137.1(2)
O(18)#1-Th(2)-O(3)#1	81.3(2)
O(2) - Th(2) - O(3) # 1	83.0(2)
O(2)#1-Th(2)-O(3)#1	77.8(2)

O(19)#1-Th(2)-O(3)#1	68.3(2)
O(19)-Th(2)-O(3)#1	140.1(2)
O(18)-Th(2)-O(3)	81.3(2)
O(18)#1-Th(2)-O(3)	137.1(2)
O(2)-Th(2)-O(3)	77.8(2)
O(2)#1-Th(2)-O(3)	83.0(2)
O(19)#1-Th(2)-O(3)	140.1(2)
O(19)-Th(2)-O(3)	68.3(2)
O(3)#1-Th(2)-O(3)	132.9(3)
O(18)-Th(2)-O(14)	136.69(15)
O(18)#1-Th(2)-O(14)	136.69(15)
O(2)-Th(2)-O(14)	65.34(16)
O(2) #1-Th(2) -O(14)	65.34(16)
O(19)#1-Th(2)-O(14)	119.86(13)
O(19) - Th(2) - O(14)	119.86(13)
O(3) #1-Th(2) -O(14)	66.46(17)
O(3) - Th(2) - O(14)	66.46(17)
O(18) -Th(2) -Th(1)	31.26(12)
O(18) #1-Th(2)-Th(1)	79.79(16)
O(2) - Th(2) - Th(1)	69.93(16)
O(2) #1-Th(2) -Th(1)	159.22(16)
O(19) #1-Th(2) -Th(1)	38.03(13)
O(19) - Th(2) - Th(1)	94.6/(14)
O(3) #I - Th(2) - Th(1)	105.82(17)
O(3) - Th(2) - Th(1)	107.10(19)
O(14) - Th(2) - Th(1)	135.1/3(10)
O(18) = Tn(2) = Tn(1) # 1	/9./9(16)
O(18) # I - In(2) - In(1) # I	31.26(12)
O(2) = III(2) = III(1) # I	159.22(16)
O(2) #1 - III(2) - III(1) #1 O(10) #1 - mb(2) - mb(1) #1	09.95(10)
O(19) # 1 - 111(2) - 111(1) # 1 O(19) - Tb(2) - Tb(1) # 1	38 03(13)
O(19) = III(2) = III(1) #1 O(3) #1 = Tb(2) = Tb(1) #1	107 10(19)
O(3) = Tb(2) = Tb(1) #1	107.10(19) 105.82(17)
O(14) - Th(2) - Th(1) #1	135,02(17) 135,173(10)
Th(1) - Th(2) - Th(1) #1	89 654 (19)
O(18) - Th(2) - Th(3)	30 68(13)
O(18) #1 - Th(2) - Th(3)	80,16(14)
O(2) - Th(2) - Th(3)	104.60(16)
O(2) #1-Th(2) -Th(3)	109.82(14)
O(19) #1-Th(2) -Th(3)	94.53(13)
O(19) -Th(2) -Th(3)	38.32(14)
O(3) #1-Th(2) -Th(3)	158.43(17)
O(3) - Th(2) - Th(3)	68.65(17)
O(14) - Th(2) - Th(3)	135.107(10)
Th(1)-Th(2)-Th(3)	59.934(14)
Th(1)#1-Th(2)-Th(3)	59.742(14)
O(20)-Th(3)-O(18)	87.0(2)
O(20)-Th(3)-O(5)	80.6(2)
O(18)-Th(3)-O(5)	142.2(2)
O(20)-Th(3)-O(12)	142.1(2)
O(18)-Th(3)-O(12)	78.9(2)
O(5)-Th(3)-O(12)	89.4(3)
O(20)-Th(3)-O(4)	138.3(2)
O(18)-Th(3)-O(4)	84.0(2)
O(5)-Th(3)-O(4)	127.8(2)
O(12)-Th(3)-O(4)	75.3(3)

O(20)-Th(3)-O(10)	81.1(2)
O(18)-Th(3)-O(10)	138.9(2)
O(5) - Th(3) - O(10)	74.1(2)
O(12) - Th(3) - O(10)	131.12(18)
O(4) - Th(3) - O(10)	79.5(2)
O(20) - Th(3) - O(19)	69.2(2)
O(18) - Th(3) - O(19)	67 9(2)
O(5) - Th(3) - O(19)	136 6(2)
O(12) - Th(3) - O(19)	133 3(2)
O(12) = III(3) = O(19)	69 7 (2)
O(4) - III(3) - O(19) O(10) - Th(3) - O(10)	71 1 (2)
O(10) = 111(3) = O(13)	71.1(2)
O(20) = III(3) = O(17)	69.4(2)
O(18) = TH(3) = O(17)	69.72(19) 70 E(0)
O(5) - TH(3) - O(17)	72.5(2)
O(12) - Tn(3) - O(17)	/2./(2)
O(4) - Th(3) - O(17)	141.7(2)
O(10) - Th(3) - O(17)	138.3(2)
O(19)-Th(3)-O(17)	120.91(16)
0(20)-Th(3)-0(15)	135.8(2)
O(18)-Th(3)-O(15)	136.9(2)
O(5)-Th(3)-O(15)	61.7(2)
O(12)-Th(3)-O(15)	64.0(2)
O(4)-Th(3)-O(15)	66.7(2)
O(10)-Th(3)-O(15)	67.7(2)
O(19)-Th(3)-O(15)	123.9(2)
O(17)-Th(3)-O(15)	115.2(2)
O(20)-Th(3)-Th(1)#1	31.32(15)
O(18)-Th(3)-Th(1)#1	79.50(16)
O(5) - Th(3) - Th(1) #1	105.04(18)
O(12) - Th(3) - Th(1) #1	157.85(13)
O(4) - Th(3) - Th(1) #1	107.03(18)
O(10) - Th(3) - Th(1) #1	70.03(13)
O(19) - Th(3) - Th(1) #1	38 24(14)
O(17) - Th(3) - Th(1) #1	95 33(13)
O(15) - Th(3) - Th(1) # 1	$137 \ 70(15)$
O(20) - Th(3) - Th(4)	$30 \ 81 \ (15)$
O(20) = III(3) = III(4) O(18) = III(3) = III(4)	80 69(14)
O(10) - 111(3) - 111(4) O(5) - mb(2) - mb(4)	70.44(15)
O(3) = III(3) = III(4) O(12) = III(3) = III(4)	70.44(LJ) 111 51(15)
O(12) = III(3) = III(4)	111.51(15)
O(4) - TH(3) - TH(4)	101.49(16)
O(10) = TH(3) = TH(4)	105.63(16)
O(19) - Tn(3) - Tn(4)	94.80(13)
O(17) - Th(3) - Th(4)	38.92(14)
O(15) - Th(3) - Th(4)	131.76(18)
Th(1)#1-Th(3)-Th(4)	60.003(12)
O(20)-Th(3)-Th(1)	80.23(14)
O(18)-Th(3)-Th(1)	32.09(14)
O(5)-Th(3)-Th(1)	110.24(15)
O(12)-Th(3)-Th(1)	69.11(12)
O(4)-Th(3)-Th(1)	109.91(16)
O(10)-Th(3)-Th(1)	159.76(14)
O(19)-Th(3)-Th(1)	94.84(12)
O(17)-Th(3)-Th(1)	38.00(13)
O(15)-Th(3)-Th(1)	132.23(15)
Th(1)#1-Th(3)-Th(1)	89.891(15)
Th(4)-Th(3)-Th(1)	59.907(10)
O(20) #1-Th(4) -O(20)	87,5(3)
	\circ , \circ

O(20) #1−Th(4)−O(6)	139.6(2)
O(20)-Th(4)-O(6)	82.1(2)
O(20)#1-Th(4)-O(6)#1	82.1(2)
O(20)−Th(4)−O(6)#1	139.6(2)
O(6)-Th(4)-O(6)#1	128.8(3)
O(20)#1−Th(4)−O(8)	80.6(2)
0(20)-Th(4)-0(8)	139.0(2)
O(6)-Th(4)-O(8)	82.2(2)
O(6)#1−Th(4)−O(8)	77.4(2)
O(20)#1-Th(4)-O(8)#1	139.0(2)
O(20)−Th(4)−O(8)#1	80.6(2)
O(6) - Th(4) - O(8) #1	77.4(2)
O(6) #1 - Th(4) - O(8) #1	82.2(2)
O(8) - Th(4) - O(8) # 1	131./(4)
O(20) #I - I'h(4) - O(17)	69.07(18)
O(20) = Tn(4) = O(17)	69.1(Z) 70.0(2)
O(6) = TI(4) = O(17)	70.8(Z) 120.1(2)
O(8) #1 - 111(4) - O(17)	139.1(2)
O(8) = III(4) = O(17) O(8) = III(4) = O(17)	70.0(Z) 120.27(10)
O(0) #1 - III(4) - O(17) #1	130.34(10)
O(20) = Tb(4) = O(17) = 1	69.1(2)
O(6) - Tb(4) - O(17) #1	139 1(2)
$O(6) \pm 1 - \pi b(4) = O(17) \pm 1$	$70 \ 8(2)$
O(8) - Th(4) - O(17) #1	138 34(18)
O(8) #1 - Th(4) - O(17) #1	70.0(2)
O(17) - Th(4) - O(17) #1	120.8(3)
O(20) #1-Th(4) -O(16)	136.26(14)
O(20) - Th(4) - O(16)	136.26(14)
O(6) - Th(4) - O(16)	64.39(17)
O(6) #1-Th(4)-O(16)	64.39(17)
O(8)-Th(4)-O(16)	65.84(19)
O(8)#1-Th(4)-O(16)	65.84(19)
O(17)-Th(4)-O(16)	119.60(14)
O(17)#1−Th(4)-O(16)	119.60(14)
O(20)#1-Th(4)-Th(1)	31.20(14)
O(20)-Th(4)-Th(1)	80.38(15)
O(6)-Th(4)-Th(1)	108.44(18)
O(6)#1-Th(4)-Th(1)	107.17(17)
O(8) - Th(4) - Th(1)	69.23(19)
O(8) #1-Th(4) -Th(1)	159.06(19)
O(17) - Th(4) - Th(1)	38.19(12)
O(1/) #1 - Th(4) - Th(1)	94.98(14)
O(16) - Th(4) - Th(1)	135.043(10)
O(20) # I - In(4) - In(1) # I	80.38(15)
O(20) = III(4) = III(1) # I	31.20(14) 107.17(17)
O(0) = 111(4) = 111(1) # 1 O(6) # 1 = mb(4) = mb(1) # 1	107.17(17) 109.44(19)
O(0) #1 - 111(4) - 111(1) #1 O(8) - Tb(4) - Tb(1) #1	159 06(19)
$O(8) \pm 1 - \pi b(4) - \pi b(1) \pm 1$	69 23(19)
O(17) - Th(4) - Th(1) #1	94 98 (14)
O(17) #1-Th(4) -Th(1) #1	38.19(12)
O(16) - Th(4) - Th(1) #1	135.043(9)
Th (1) - Th (4) - Th (1) #1	89.914(19)
O(20) #1-Th(4)-Th(3) #1	30.80(15)
O(20) - Th(4) - Th(3) #1	80.63(13)
O(6)-Th(4)-Th(3)#1	160.60(17)

O(6)#1-Th(4)-Th(3)#1	70.61(17)
O(8)-Th(4)-Th(3)#1	105.45(16)
O(8)#1-Th(4)-Th(3)#1	108.20(16)
O(17)-Th(4)-Th(3)#1	94.72(13)
O(17)#1-Th(4)-Th(3)#1	38.67(13)
O(16)-Th(4)-Th(3)#1	135.000(10)
Th(1)-Th(4)-Th(3)#1	59.879(14)
Th(1)#1-Th(4)-Th(3)#1	60.071(14)
O(2) - C(1) - O(1)	127.4(11)
O(2) - C(1) - C(2')	116.8(12)
O(1) - C(1) - C(2')	111.1(11)
O(2) - C(1) - C(2)	118.5(11)
O(1) - C(1) - C(2)	114.0(11)
C(2') - C(1) - C(2)	26.2(9)
O(3) - C(3) - O(4)	124.4(10)
O(3) - C(3) - C(4)	121.8(11)
O(4) - C(3) - C(4)	108.5(9)
N(2) - C(4) - C(3)	106.1(12)
O(5) - C(5) - O(6)	127.2(10)
O(5) - C(5) - C(6)	120.4(9)
O(6) - C(5) - C(6)	111.8(10)
N(3) - C(6) - C(5)	114.0(11)
O(8) - C(7) - O(7)	127.0(9)
O(8) - C(7) - C(8)	116.0(10)
O(7) - C(7) - C(8)	117.0(9)
N(4)-C(8)-C(7)	112.9(11)
O(10)-C(9)-O(13)#1	129.7(8)
O(10)-C(9)-C(10)	115.6(8)
O(13)#1-C(9)-C(10)	114.7(9)
N(5)-C(10)-C(9)	114.5(8)
O(11)-C(12)-O(12)	125.8(9)
O(11)-C(12)-C(11)	115.1(9)
O(12)-C(12)-C(11)	119.1(8)
O(11)-C(12)-C(11')	113.5(9)
O(12)-C(12)-C(11')	117.4(8)
C(11)-C(12)-C(11')	20.7(10)
C(1) - C(2) - N(1)	105.1(16)
C(12)-C(11)-N(6)	110.9(12)
C(1) - C(2') - N(1')	100.3(14)
N(6') - C(11') - C(12)	104.5(16)
C(1) = O(1) = Th(1)	135.3(7)
C(1) = O(2) = Th(2)	135.8(7)
C(3) = O(3) = Th(2)	139.6(7)
C(3) = O(4) = Th(3)	133.9(6)
C(5) = O(5) = Th(3)	136.4(6)
C(5) = O(6) = Th(4)	134.6(/)
C(7) = O(7) = Tn(1)	130.8(6)
C(7) = O(8) = Tn(4)	141.0(/)
C(9) = O(10) = III(3) C(12) = O(11) = mb(1)	122.7(3)
C(12) = O(11) = III(1) C(12) = O(12) = Tb(3)	133.2(7) 137.5(5)
C(12) = O(12) = III(3) C(9) = = 1 = O(13) = mb(1)	137.0(3)
$\nabla (J) \pi I = O (I - I) - I = O (I)$ Th (1) - O (1 - T) - Th (2)	103 6(2)
Th $(1) - O(17) - Th (3)$	102.0(2) 102 93/171
Th(3) = O(17) = Th(4)	102.00(17)
Th(2) = O(18) = Th(3)	119 5(3)
Th(2) - O(18) - Th(1)	118.6(2)
、 , - 、= = , = 、= ,	/ _ /

Th(3)-O(18)-Th(1)	116.1(2)
Th(1)#1-0(19)-Th(2)	103.55(18)
Th(1)#1-0(19)-Th(3)	103.2(2)
Th(2)-O(19)-Th(3)	103.2(2)
Th(3)-O(20)-Th(4)	118.4(3)
Th(3)-O(20)-Th(1)#1	117.5(2)
Th(4)-O(20)-Th(1)#1	117.7(2)
O(23)-N(7)-O(22)	120.3(6)
O(23)-N(7)-O(21)	119.8(6)
O(22)-N(7)-O(21)	119.8(6)
O(24)-N(8)-O(26)	120.3(7)
O(24)-N(8)-O(25)	120.4(6)
O(26)-N(8)-O(25)	119.3(6)
O(29)-N(9)-O(27)	119.8(7)
O(29)-N(9)-O(28)	119.8(7)
O(27)-N(9)-O(28)	119.2(7)
O(33)-Cl(1)-O(30)	110.5(5)
O(33)-Cl(1)-O(32)	109.8(5)
O(30)-Cl(1)-O(32)	109.4(5)
O(33)-Cl(1)-O(31)	109.4(5)
O(30)-Cl(1)-O(31)	109.1(5)
O(32)-Cl(1)-O(31)	108.6(5)
O(37)-Cl(2)-O(36)	109.5(5)
O(37)-Cl(2)-O(34)	109.6(5)
O(36)-Cl(2)-O(34)	109.5(5)
O(37)-Cl(2)-O(35)	109.3(5)
O(36)-Cl(2)-O(35)	109.4(5)
O(34)-Cl(2)-O(35)	109.4(5)
O(40)-Cl(3)-O(38)	109.6(5)
O(40)-Cl(3)-O(41)	109.9(5)
O(38)-Cl(3)-O(41)	109.4(5)
O(40)-Cl(3)-O(39)	109.4(5)
O(38)-Cl(3)-O(39)	109.1(5)
O(41)-Cl(3)-O(39)	109.4(5)

Symmetry transformations used to generate equivalent atoms: #1 $-x\!+\!2,\,y,-z\!+\!1/2$

Figure S4: Ortep drawing of **2**, $[Th(H_2O)_3(Gly)_3] \cdot (ClO_4)_4H_2O$ with atom labeling used in Table S2.

 Table S2: Bond lengths [Å] and angles [deg] of 2.

Th(1)-O(6)	2.351(5)
Th(1)-O(4)	2.374(5)
Th(1)-O(9)#1	2.377(6)
Th(1)-O(7)	2.469(4)
Th(1)-O(5)	2.483(5)
Th(1)-O(3)	2.493(5)
Th(1)-O(2)	2.516(5)
Th(1)-O(8)	2.528(5)
Th(1)-O(1)	2.537(5)
N(1)-C(5)	1.363(13)
N(2)-C(4)	1.455(9)
N(3)-C(6)	1.464(9)
O(3)-C(2)	1.224(8)
O(4)-C(3)	1.242(7)
O(5)-C(3)#2	1.229(7)
O(6)-C(1)#2	1.243(7)
O(7)-C(1)	1.240(7)
O(9)-C(2)	1.213(8)

O(9) -Th(1) #2 C(1) -O(6) #1 C(2) -C(5) C(3) -O(5) #1 C(3) -C(6) Cl(1) -O(10) Cl(1) -O(12) Cl(1) -O(12) Cl(1) -O(13) Cl(2) -O(14) Cl(2) -O(14) Cl(2) -O(15) Cl(2) -O(15) Cl(2) -O(17) Cl(3) -O(21) Cl(3) -O(21) Cl(3) -O(21) Cl(3) -O(18) Cl(4) -O(22) Cl(4) -O(22)	$\begin{array}{c} 2.377(6)\\ 1.243(7)\\ 1.522(9)\\ 1.538(12)\\ 1.229(7)\\ 1.492(9)\\ 1.384(8)\\ 1.406(7)\\ 1.427(8)\\ 1.406(7)\\ 1.427(8)\\ 1.430(8)\\ 1.405(8)\\ 1.417(6)\\ 1.431(6)\\ 1.431(6)\\ 1.437(7)\\ 1.351(10)\\ 1.366(12)\\ 1.380(8)\\ 1.450(10)\\ 1.328(10)\\ 1.379(11)\\ 1.389(9)\end{array}$
O(6) -Th(1) -O(4) O(6) -Th(1) -O(9) #1 O(4) -Th(1) -O(9) #1 O(6) -Th(1) -O(7) O(4) -Th(1) -O(7) O(9) #1 -Th(1) -O(7) O(6) -Th(1) -O(5) O(4) -Th(1) -O(5) O(7) -Th(1) -O(5) O(7) -Th(1) -O(3) O(4) -Th(1) -O(3) O(7) -Th(1) -O(3) O(7) -Th(1) -O(3) O(7) -Th(1) -O(3) O(5) -Th(1) -O(2) O(4) -Th(1) -O(2) O(4) -Th(1) -O(2) O(7) -Th(1) -O(2) O(7) -Th(1) -O(2) O(7) -Th(1) -O(2) O(7) -Th(1) -O(2) O(7) -Th(1) -O(8) O(9) #1 -Th(1) -O(8) O(9) #1 -Th(1) -O(8) O(7) -Th(1) -O(8) O(7) -Th(1) -O(8) O(7) -Th(1) -O(8) O(7) -Th(1) -O(1) O(7) -Th(1) -	136.42(18) 139.6(2) 75.6(2) 86.93(16) 75.10(17) 78.38(19) 80.09(17) 89.43(17) 132.67(19) 141.04(17) 77.88(17) 141.16(18) 86.1(2) 134.68(18) 78.12(18) 70.69(18) 132.35(18) 68.9(2) 67.59(16) 138.14(17) 67.09(19) 69.53(17) 67.06(18) 135.8(2) 70.07(17) 70.97(18) 138.03(18) 122.19(19) 136.34(17) 71.26(18) 67.58(19) 136.73(15) 65.09(16) 70.12(18)

O(2)-Th(1)-O(1)	119.55(17)
O(8)-Th(1)-O(1)	118.23(18)
C(2)-O(3)-Th(1)	142.6(5)
C(3)-O(4)-Th(1)	150.4(5)
C(3)#2-O(5)-Th(1)	145.4(4)
C(1) #2-O(6) - Th(1)	176.1(5)
C(1) - O(7) - Th(1)	141.0(4)
C(2) - O(9) - Th(1) #2	174.3(6)
O(7) - C(1) - O(6) # 1	126.4(6)
O(7) - C(1) - C(4)	117.9(6)
O(6) #1 - C(1) - C(4)	115.6(6)
O(9) - C(2) - O(3)	127.6(7)
O(9) - C(2) - C(5)	107.9(7)
O(3) - C(2) - C(5)	124.5(6)
O(5) #1 - C(3) - O(4)	125 8(6)
O(5) #1 - C(3) - C(6)	119.7(6)
O(4) = C(3) = C(6)	114 5(6)
N(2) - C(4) - C(1)	112 2(6)
N(2) = C(5) - C(2)	113 2 (9)
N(1) = C(0) = C(2) N(3) = C(6) = C(3)	113.2(5) 114.1(6)
O(10) = C1(1) = O(12)	1103(6)
O(10) - C1(1) - O(11)	108 6(6)
O(12) - C1(1) - O(11)	107.6(5)
O(10) - C1(1) - O(13)	1087(5)
O(12) - C1(1) - O(13)	109.9(5)
O(11) - C1(1) - O(13)	111.7(6)
O(14) - C1(2) - O(16)	112.0(5)
O(14) - C1(2) - O(15)	108.2(5)
O(16) - C1(2) - O(15)	110.2(5)
O(14) - C1(2) - O(17)	109.3(5)
O(16) - C1(2) - O(17)	109.3(5)
O(15) - Cl(2) - O(17)	107.8(4)
O(19) - C1(3) - O(21)	118.2(11)
O(19) - C1(3) - O(20)	112.4(8)
O(21) - C1(3) - O(20)	109.2(7)
O(19) - C1(3) - O(18)	105.2(7)
O(21) - C1(3) - O(18)	104.6(10)
O(20) - C1(3) - O(18)	106.3(6)
O(24) - Cl(4) - O(23)	110.6(11)
O(24) - Cl(4) - O(25)	104.9(8)
O(23)-Cl(4)-O(25)	112.9(12)
O(24)-Cl(4)-O(22)	115.1(9)
O(23)-Cl(4)-O(22)	107.2(8)
O(25)-Cl(4)-O(22)	106.1(7)

Figure S5. All spectra (13 solutions, and the solid compound) can be reproduced by 2 spectral components in the principal component analysis (PCA). The two limiting components are shown here: EXAFS spectra (top) and the corresponding Fourier transforms (bottom). **Component 1** represents the summary over all mononuclear species, **component 2** represents the hexanuclear complex. The analysis was performed with the program ITFA (A. Rossberg, T. Reich, G. Bernhard, Anal. Bioanal. Chem. **2003**, 376, 631-638.)

Figure S6. The species distribution of **component 2**. The extracted component distribution including the solid sample. Note the very close similarity with Figure 3 of the manuscript. There, the distribution function was extracted only by the intensity of the Th peak.