Electronic Supplementary Material (ESI) for Dalton Transactions This journal is o The Royal Society of Chemistry 2012

Electronic Supplementary Information

Synthesis and X-ray structures of cyclometalated iridium complexes including the hydrides

Chao Wang, Hsin-Yi Tiffany Chen, John Bacsa, C. Richard A. Catlow and Jianliang Xiao

Figure S1 The structures of cis-7 (left) and trans-7 (right).

The bond lengths and angles of the complexes 4, 5 and 7 were computed at different levels of theory using the DMol³ and Gaussian codes. The structural properties of the complexes 4 and 5 from experiment are shown in Table S1, which reveals that for both complexes 4 and 5, the differences between computational and experimental bond lengths and angles are within 2%, indicating our computational settings are reasonable. There is no experimental for the complex 7. We compare the structural properties of *trans*-7 and *cis*-7 in terms of computational results.

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is O The Royal Society of Chemistry 2012

Electronic Supplementary Information

 Table S1 Structural properties of complexes 4, 5 and 7 from experimental data and DFT calculations. The units are [Å] for bond length and [°] for bond angles.

Catalyst Code	4 Exp	5 Exp	4 DMol ³	4 G03	4 G03	5 DMol ³	5 G03	5 G03	<i>cis-</i> 7 DMol ³	<i>cis-</i> 7 G03	<i>trans-</i> 7 DMol ³	trans-7 G03
XC	—	-	PBE	PBE0	PBE0	PBE	PBE0	PBE0	PBE	PBE0	PBE	PBE0
Basis Set	—	—	DNP	LANL2DZ/ 6-31G**	SDD/ 6-31G**	DNP	LANL2DZ/ 6-31G**	SDD/ 6-31G**	DNP	LANL2DZ/ 6-31G**	DNP	LANL2DZ/ 6-31G**
Ir_1-N_1	2.09	2.03	2.07	2.06	2.07	2.08	2.06	2.07	2.20	2.18	2.19	2.17
Ir_1-H_1	1.75	1.71	1.60	1.59	1.59	1.60	1.59	1.59	1.60	1.59	1.60	1.58
Ir ₁ -C ₃	2.04	2.05	2.02	2.00	2.01	2.02	2.00	2.01	2.04	2.02	2.05	2.03
N ₁ -C ₁	1.31	1.32	1.33	1.31	1.31	1.33	1.31	1.31	1.51	1.50	1.53	1.51
C ₂ -C ₃	1.47	1.44	1.44	1.44	1.44	1.44	1.44	1.44	1.42	1.41	1.42	1.41
Ir ₁ -C	2.26	2.27	2.29	2.26	2.25	2.29	2.26	2.26	2.30	2.28	2.31	2.30
(π-ring)	2.29	2.26	2.35	2.31	2.31	2.35	2.31	2.31	2.36	2.33	2.34	2.32
[Å]	2.27	2.25	2.33	2.30	2.30	2.33	2.30	2.30	2.33	2.30	2.32	2.29
	2.26	2.23	2.27	2.25	2.25	2.27	2.26	2.26	2.25	2.23	2.25	2.22
[°]	2.21	2.17	2.22	2.19	2.19	2.22	2.19	2.19	2.19	2.15	2.20	2.17
N_1 - Ir_1 - H_1	81.32	88.77	85.71	85.04	85.14	85.02	84.87	84.95	82.36	82.82	86.81	86.54
H ₁ -Ir ₁ -C ₃	87.10	86.45	81.61	81.30	81.26	80.45	81.37	81.23	83.60	82.66	81.92	81.65
C_3 -Ir ₁ -N ₁	76.63	77.66	77.65	77.75	77.56	77.90	77.97	77.79	76.73	76.83	77.96	77.86