Supporting information for:

Supramolecular Chemistry of Metallogrids via Directed Hydrogen-bonding

Artur R. Stefankiewicz,^{*a#*} Guillaume Rogez,^{*b*} Jack Harrowfield,^{*a*} Alexandre N. Sobolev,^{*c*} Augustin Madalan,^{*a*†} Juhani Huuskonen,^{*d*} Kari Rissanen^{*d*} and Jean-Marie Lehn^{*a**}

^aInstitut de Science et d'Ingénierie Supramoléculaires, Université de Strasbourg, 8, allée Gaspard Monge, 67083 Strasbourg, France # Present address: University Chemical Laboratory, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom. ^bInstitut de Physique et Chimie des Matériaux de Strasbourg, 23 rue du Loess, 67034 Strasbourg, France ^cChemistry, M313, University of Western Australia, Crawley, WA 6009, Australia ^dDepartment of Chemistry, Nanoscience Center, University of Jyväskylä, P.O. Box 35, 40014 JYU, Finland [†] Present address: Inorganic Chemistry Laboratory, Faculty of Chemistry, University of Bucharest, Str. Dumbrava Rosie 23, 020464 Bucharest Romania.

Email: <u>lehn@unistra.fr</u>; tel: +33 (0)3 68 85 51 45

Experimental

Reagents and solvents

Reagents (imidazole aldehydes and metal salts) obtained from Aldrich, Merck, Lancaster, Fluka, Acros or Alfa Aesar were used directly without further purification unless otherwise noted. DMSO solvates of various metal triflates were available from earlier work.⁵ 4,6-dihydrazino-2-phenylpyrimidine⁷ and 4,6-di(N-methylhydrazino)-2-phenylpyrimidine⁸ were prepared following literature methods.

Water was purified using a Millipore Elix 10 (reverse osmosis) system. Anhydrous DMSO, nitromethane, acetonitrile and absolute EtOH were purchased from Aldrich, and technical DCM (Aldrich) was bought with amylene as stabilizer. Diethyl ether and distilled DCM were dried by passage through a column of activated alumina and copper oxide under nitrogen. CDCl₃ was filtered through basic alumina to remove traces of acid.

Instrumentation

¹H NMR spectra were recorded on a Bruker Avance 400 spectrometer at 400 MHz. Chemical shifts are given in ppm. The residual solvent proton peak was used as reference for calibration (CDCl₃: 7.26 ppm, [D₆]DMSO: 2.50 ppm, CD₃CN: 1.94 ppm, CD₃NO₂: 4.33 ppm).²³ The coupling constants J are given in Hz. Peaks are described as singlet (s), doublet (d), triplet (t), quartet (qt), quintuplet (quin), sextet (sxt), doublet of doublets (dd), doublet of doublet of doublets (ddd), triplet of doublets (td), multiplet (m) or broad (br). ¹³C NMR spectra were recorded on a Bruker Advance 400 spectrometer at 100 MHz. All spectra were measured under broadband decoupled conditions. Chemical shifts are given in ppm. The residual solvent peaks were taken as reference (CDCl₃: 77.0 ppm, [D₆]DMSO: 39.43).²³ 2D NMR (COSY, NOESY) spectra were also recorded on a Bruker Avance 400 spectrometer. Unless otherwise noted, all spectra were recorded at 25°C.

LC/MS was performed using reverse phase HPLC (C_{18} solid phase, 5 µm particle size, 2.1 x 5 mm column, eluent: H₂O with 0.01% TFA→CH₃CN with 0.01% TFA, 0.7 mL/min flow, diode array detector) combined with a Thermo MSQ quadrupole electrospray mass spectrometer using the positive ion detection mode. The given value represents the largest peak. High Resolution Mass Spectrometry (HR-MS) analyses were performed on a Bruker Micro TOF mass spectrometer at the Service de Spectrométrie de Masse, Université de

Strasbourg. MALDI-TOF analyses using a matrix incorporating Li(I) were performed on a Bruker AutoFlex II mass spectrometer at the Service de Spectrométrie de Masse, Université de Strasbourg. For the grid complexes, the concentration was adjusted to be approximately $5x10^{-3}$ mol/L in acetonitrile solution.

Elemental analyses were obtained either from the "Service d'Analyses du CNRS" (Lyon) or from the Service de Microanalyse, Université de Strasbourg.

Magnetic measurements were performed by using a Quantum Design MPMS-XL SQUID magnetometer at the Institut de Physique et Chimie des Matériaux de Strasbourg. Susceptibility measurements were performed in the range 300-1.8 K with an applied field of 0.5 T. The temperature sweep rate was 5 K min⁻¹. Magnetization measurements at different fields at a given temperature were used to test for the presence of ferromagnetic impurities, although no significant levels were detected. Data were corrected for the diamagnetism of the sample holder and the ligands (as estimated from Pascal's constants).

Crystallography

Single crystal, X-ray diffraction structure determinations for the ligands L2, L4 and L5 and the complexes [Fe₄(L2)₄](BF₄)₈•12CH₃CN•3.5H₂O and [Co₄(L5)₄](CF₃SO₃)₈•6CH₃CN•6H₂O were performed by Dr Lydia Brelot at the Service de Radiocristallographie, Université de Strasbourg, although all the structure solutions were ultimately refined at the University of Western Australia (Dr Alex Sobolev) or at ISIS, Strasbourg (Dr Augustin Madalan). The crystals were placed in oil and a single crystal was selected, mounted on a glass fibre and placed in a low-temperature nitrogen stream. The X-ray diffraction data were collected on a Nonius-Kappa-CCD diffractometer with graphite-monochromated Mo-K_{α} radiation (λ = 0.71073 Å), using a "phi-scan" type scan mode. Structures of the complexes $[Zn_4(L2)_4](ClO_4)_8 \cdot 3.5CH_3CN \cdot 4H_2O$ and $[Co_4(L2)_4]Cl(PF_6)_7 \cdot 4CH_3CN$ were determined at the University of Jyväskylä. Procedures were identical with those of Strasbourg except in that the diffraction data was collected on a Bruker-Nonius Kappa Apex-II diffractometer. Collect software²⁵ was used for the data measurement and DENZO-SMN²⁶ for the processing. The structures were solved by direct methods using the program SHELXS-97.²⁷ The refinement and all further calculations were carried out using SHELXL-97.²⁸ Full crystallographic data have been deposited with the Cambridge Crystallographic Data Base under CCDC 826148 -826154.

Synthesis

L1

To a stirred solution of 4,6-dihydrazino-2-phenylpyrimidine (325.29 mg, 1.50 mmol) in EtOH (40 ml), 4(5)-imidazolecarboxaldehyde (288.94 mg, 3 mmol) was added. The clear mixture was stirred at reflux under nitrogen for 24 h. The white precipitate formed was collected by filtration, washed with EtOH and dried under high vacuum. Yield: 322 mg (0.86 mmol, 58%). ¹H NMR ([D₆]DMSO, 400 MHz): TM(ppm) = 6.85 (s, 2H, H₆), 7.33 (s, 2H, H₁), 7.49 (m, 3H, H₁₀ and H₁₁), 7.67 (s, 2H, H₄), 8.08 (s, 2H, H₂), 8.30 (m, 2H, H₉), 12.77 (s, 2H, NH_{imid}), 12.83 (s, 2H, NH_{hydraz}). ¹³C NMR ([D₆]DMSO, 100 MHz): 79.10, 120.05, 127.43, 128.13, 130.01, 130.52, 136.06, 136.16, 137.65, 162.28, 162.45. HR-MS (ES): calcd for C₁₈H₁₇N₁₀: m/z = 373.1632, found m/z = 373.1684 [M+H]⁺. Microanalysis: calcd (%) for C₁₈H₁₆N₁₀·1H₂O: C 55.38, H 4.65, N 35.88; found C 55.20, H 4.64, N 37.49.

N-C₁₆H₃₃L1

Under a nitrogen atmosphere, 4(5)-imidazolecarboxaldehyde (123 mg, 1.22 mmol) was added to a suspension of NaH (60 % dispersion in mineral oil; 66.4 mg, 1.65 mmol) in dry, icecooled THF (12 mL). The mixture was then heated at reflux for 2 h before being cooled to room temperature and mixed with iodohexadecane (3.99 mL, 12.7 mmol). Heating at reflux was resumed for 16 h and the cooled final mixture cooled before being filtered and diluted with water (50 mL). The resulting mixture was extracted with EtOAc (3x50 mL) and the combined extracts were washed with brine, dried over Na₂SO₄ and concentrated *in vacuo*. The residue was purified by column chromatography (EtOAc/n-heptane = 6:4) to give the product as a white solid. Yield: 150 mg (0.49 mmol, 39%). ¹H NMR (CDCl₃, 400 MHz): TM(ppm) = 0.86 (t, J = 6.8 Hz, 3H, H_{hexadecyl}), 1.24 (m, 26H, H_{hexadecyl}), 1.80 (quin, J = 7.2 Hz, 2H, H_{hexadecyl}), 3.97 (t, J = 6.8 Hz, 2H, H_{hexadecyl}), 7.53 (s, 1H, H₂ or H₅), 7.61 (d, J = 1.2 Hz, 1H, H₂ or H₅), 9.86 (s, 1H, H₆). ¹³C_NMR (CDCl₃, 100 MHz): TM = 14.03, 22.60, 26.36, 28.90, 29.28, 29.40, 29.49, 29.54, 29.58, 30.75, 31.84, 47.67, 124.12, 138.59, 142.40, 186.19. HR-MS (ES): calcd for C₂₀H₃₆N₂Li₁O₁: m/z = 327.2983, found $m/z = 327.2962 [M+Li]^+$.

L2

To a stirred solution of 4,6-di(*N*-methylhydrazino)-2-phenylpyrimidine (163.1 mg, 0.66 mmol) in EtOH (15 ml), 4(5)-imidazolecarboxaldehyde (128.2 mg, 1.32 mmol) was added. The solution was stirred under nitrogen at room temperature for 18 h. The white precipitate formed was collected by filtration and dried under high vacuum. Yield: 236 mg (0.59 mmol, 80%). ¹H NMR ([D₆]DMSO, 400 MHz): TM(ppm) = 3.73 (s, 6H, CH₃), 7.52 (m, 6H, H₁₁,H₁₂, H₇ and H₁), 7.79 (s, 2H, H₂), 7.95 (s, 2H, H₄), 8.43 (m, 2H, H₁₀), 12.37 (s, br, 2H, H_{imid}). ¹³C NMR ([D₆]DMSO, 100 MHz): 18.4, 29.4, 54.8, 55.9, 84.8, 127.5, 128.1, 130.1, 136.7, 137.6, 160.8, 162.3. HR-MS (ES): calcd for C₂₀H₂₀N₁₀Na: m/z = 423.1765, found m/z = 423.1821 [M+Na]⁺ and calcd for C₂₀H₂₁N₁₀: m/z = 401.1945, found m/z = 401.1995 [M+H]⁺. Microanalysis: calcd (%) for C₂₀H₂₀N₁₀·3H₂O: C 52.12, H 17.49, N 30.39; found C 52.56, H 17.31, N 30.70.

L3

To a stirred solution of 4,6-di(*N*-methylhydrazino)-2-phenylpyrimidine (83.76 mg, 0.34 mmol) in EtOH (7 ml), 5-methylimidazole-4-carboxaldehyde (75.50 mg, 0.68 mmol) and two

drops of AcOH were added. The mixture was stirred under nitrogen at room temperature for 24 h. The white precipitate formed was collected by filtration, washed with EtOH and dried under high vacuum. Yield: 131 mg (0.30 mmol, 88%). Due to the low solubility of this compound, no satisfactory NMR spectra could be obtained. HR-MS (ES): calcd for $C_{22}H_{24}Li_1N_{10}$: m/z = 435.2340, found $m/z = 435.2311 [M+Li]^+$. Microanalysis: calcd (%) for $C_{22}H_{24}N_{10}\cdot 2H_2O$: C 56.88, H 6.08, N 30.15; found C 56.24, H 5.76, N 30.22.

To a stirred solution of 4,6-di(*N*-methylhydrazino)-2-phenylpyrimidine (72.73 mg, 0.29 mmol) in EtOH (7 ml), 2-methyl-1H-imidazole-4-carboxaldehyde (65.56 mg, 0.59 mmol) and two drops of AcOH were added. The mixture was stirred under nitrogen at room temperature for 24 h. The white precipitate formed was collected by filtration, washed with EtOH and dried under high vacuum. Yield: 110 mg (0.25 mmol, 88%). ¹H NMR (CDCl₃, 400 MHz): TM(ppm) = 2.37 (s, 6H, H₃), 3.66 (s, 6H, H₆), 6.96 (s, 2H, H₁), 7.35 (m, 3H, H₁₂ and H₁₃), 7.60 (s, 2H, N*H*), 7.74 (brs, 1H, H₈), 8.35 (m, 2H, H₁₁). ¹³C NMR (CDCl₃, 100 MHz): TM = 18.46, 29.70, 35.23, 57.43, 83.64, 122.23, 127.76, 128.69, 131.23, 135.81, 143.12, 161.45, 165.82. HR-MS (ES) : calcd for C22H25N10 : m/z = 429.2258, found m/z = 429.2244 [M + H]⁺. Microanalysis: calcd (%) for C₂₂H₂₄N₁₀·5H₂O: C 50.95, H 6.61, N 27.01; found C 51.19, H 6.79, N 27.37.

L5

collected by filtration, washed with EtOH and dried under high vacuum. Yield: 145 mg (0.36 mmol, 73%). ¹H NMR ([D₆]DMSO, 400 MHz): TM(ppm) = 3.77 (s, 6H, *CH*₃), 7.12 (d, br, 2H, H₁ or H₂), 7.34 (d, br, 2H, H₁ or H₂), 7.53 (m, 3H, H₁₁ and H₁₂), 7.71 (s, 1H, H₇), 7.89 (s, 2H, H₄), 8.46 (m, 2H, H₁₀), 12.55 (s, 2H, H_{imid}). ¹³C NMR ([D₆]DMSO, 100 MHz): 18.46, 29.70, 55.92, 85.63, 127.61, 128.30, 129.69, 130.42, 137.47, 143.92, 161.09, 162.43. HR-MS (ES): calcd for C₂₀H₂₁N₁₀: *m/z* = 401.1945, found *m/z* = 401.1921 [*M*+*H*]⁺. Microanalysis: calcd (%) for C₂₀H₂₀N₁₀·6H₂O: C 47.24, H 6.34, N 27.54; found C 46.98, H 6.53, N 27.79.

$[Fe_4(L1)_4](OTf)_8$

To a suspension of ligand L1 (50.44 mg, 135 µmol) in CH₃NO₂ (10 ml), [Fe(dmso)₆](OTf)₂ (111.44 mg, 135 µmol) was added. The mixture was stirred at 120 °C for 24 h. The complex was isolated in quantitative yield as brown solid by evaporation of the solvent and crystallisation of the residue from MeCN by the addition of Et₂O. ¹H NMR (CD₃CN, 400 MHz): TM(ppm) = -62.12, -40.82, -24.95, -7.80, 4.40, 19.89, 76.06, 88.25, 110.10, 187.69, 195.70. Microanalysis: calcd (%) for C₈₀H₆₄F₂₄N₄₀O₂₄S₈Fe₄·21H₂O·5DMSO: C 29.42, H 3.73, N 15.25; found C 29.65, H 3.50, N 15.20.

$[Fe_4(N-C_{16}H_{33}L1)_4](BF_4)_8$

 $[Fe(OH_2)_6](BF_4)_2$ (3.4 mg, 10 µmol) was added to a stirred suspension of ligand N-C₁₆H₃₃L1 (8 mg, 10 µmol) in CH₃CN (2 mL), a red solution slowly forming. After stirring the mixture at room temperature for 24 h to give a clear solution, the product was isolated by evaporation of the solvent. Sufficient material was obtained for SQUID magnetic measurements only.

$[Zn_4(L1)_4](OTf)_8$

To a suspension of ligand L1 (20.82 mg, 55.90 µmol) in CH₃NO₂ (4 ml), [Zn(dmso)₆](OTf)₂ (46.53 mg, 55.90 µmol) was added. The yellow solution was stirred at 100 °C for 24 h. The complex was isolated in quantitative yield as light brown solid by evaporation of the solvent and crystallisation of the residue from MeCN by the addition of Et₂O. ¹H NMR (CD₃CN, 400 MHz): TM(ppm) = 5.86 (d, J = 6.8 Hz, 1H, H₉), 6.11 (s, 1H, H₆), 6.51 (d, J = 7.2 Hz, 1H, H₉), 7.08 (t, J = 8.0 Hz, 1H, H₁₀), 7.32 (s, 2H, H₁), 7.34 (d, J = 1.2 Hz, 2H, H₂), 7.56 (t, J = 7.2 Hz, 1H, H₁₀), 7.58 (s, 2H, H₄), 7.87 (t, J = 7.6 Hz, 1H, H₁₁), 10.80 (s, 2H, NH_{imid}), 10.89 (s, 2H, NH_{hydr}). HR-MS (ES): calcd for C₇₇H₆₄F₁₅N₄₀O₁₈S₆Zn₄: m/z = 1322.0232, found m/z = 1322.0236 [M - 20Tf]²⁺, calcd for C₇₇H₆₄F₁₅N₄₀O₁₅S₅Zn₄: m/z = 831.6979, found m/z = 831.6903 [M - 30Tf]³⁺. Microanalysis: calcd (%) for C₈₀H₆₄F₂₄N₄₀O₂₄S₈Zn₄·14H₂O·3DMSO: C 30.11, H 3.23, N 16.33; found C 30.37, H 3.21, N 16.31

$[Zn_4(L2)_4](OTf)_8$

To a suspension of L2 (14.8 mg, 37 µmol) in CH₃CN (2 ml), Zn(OTf)₂·H₂O (13.4 mg, 37 µmol) was added. The mixture was stirred at room temperature for 24 h. The complex was isolated as a dull yellow solid by evaporation of the solvent and crystallisation of the residue from MeCN by the addition of Et₂O. Yield: 23 mg, 82%. ¹H NMR (CD₃CN, 400 MHz): TM(ppm) = 3.42 (s, 6H, CH₃), 5.73 (d, J = 7.6 Hz, 1H, H₁₀), 6.38 (s, 1H, H₇), 6.54 (d, J = 8 Hz, 1H, H₁₀), 7.08 (t, J = 8 Hz, 1H, H₁₁), 7.30 (s, 2H, H₁), 7.38 (d, J = 1.6 Hz, 2H, H₂), 7.48 (t, J = 7.6 Hz, 1H, H₁₁), 7.67 (s, 2H, H₄), 7.77 (t, J = 7.6 Hz, 1H, H₁₂), 10.93 (s, 2H, NH_{imid}). HR-MS (ES): calcd for C₈₆H₈₀F₁₈N₄₀O₁₈S₆Zn₄: m/z = 1378.0859, found m/z = 1378.1067 [M = 20Tf]²⁺, calcd for C₈₅H₈₀F₁₅N₄₀O₁₅S₅Zn₄: m/z = 614.5667, found m/z = 614.5768 [M = 40Tf]⁴⁺. Microanalysis: calcd (%) for C₈₀H₈₀Cl₈N₄₀O₃₂Zn₄·14H₂O: C 33.01, H 3.74, N 19.25; found C 32.89, H 3.84, N 19.71.

$[Co_4(L2)_4](BF_4)_8$

To a suspension of ligand L2 (29.7 mg, 74 µmol) in CH₃CN (4 ml), Co(BF₄)₂·6H₂O (25.3 mg, 74 µmol) was added. The mixture was stirred at room temperature for 24 h. The complex was isolated as dark red solid by evaporation of the solvent and crystallisation of the residue from MeCN by the addition of Et₂O. Yield: 43 mg, 78%. ¹H NMR (CD₃CN, 400 MHz): TM(ppm) = -89.65, -75.59, -50.87, -17.45, -16.47, 11.00, 43.55, 95.91, 124.58, 154.33, 224.22. HR-MS (ES): calcd for C₈₀H₈₀B₆F₂₄N₄₀Co₄: m/z = 1179.2517, found $m/z = 1179.2451 [M - 2BF_4]^{2+}$, calcd for C₈₀H₈₀B₅F₂₀N₄₀Co₄: m/z = 757.1664, found $m/z = 757.1743 [M - 3BF_4]^{3+}$, calcd for C₈₀H₈₀B₄F₁₆N₄₀Co₄: m/z = 546.1238, found $m/z = 546.1494 [M - 4BF_4]^{4+}$. Microanalysis: calcd (%) for C₈₀H₈₀B₈Co₄F₃₂N₄₀·12H₂O: C 34.96, H 3.81, N 20.39; found C 34.94, H 3.96, N 20.39. For an X-ray structure determination, the complex was converted to the hexafluorophosphate salt by addition of aqueous ammonium hexafluorophosphate to a solution of the tetrafluoroborate in acetonitrile.

$[Fe_4(L2)_4](BF_4)_8$

To a suspension of ligand L2 (29.3 mg, 73 µmol) in CH₃CN (4 ml), Fe(BF₄)₂·6H₂O (24.7 mg, 73 µmol) was added. The mixture was stirred at 60°C for 24 h. A small amount of amorphous solid was filtered out and the complex was isolated as light orange solid by evaporation of the filtrate and crystallisation of the residue from MeCN by the addition of Et₂O. Yield: 40 mg, 74%. ¹H NMR (CD₃CN, 400 MHz): TM(ppm) = -81.03, -58.20, -37.13, -15.06, 3.06, 15.51, 37.71, 90.02, 96.90, 146.70, 176.13. HR-MS (ES): calcd for C₈₀H₈₀B₆F₂₄N₄₀Fe₄: m/z = 1173.2555, found $m/z = 1173.2164 [M - 2BF_4]^{2+}$, calcd for C₈₀H₈₀B₅F₂₀N₄₀Fe₄: m/z = 753.1690, found $m/z = 752.1565 [M - 3BF_4]^{3+}$, calcd for C₈₀H₈₀B₄F₁₆N₄₀Fe₄: $m/z = 543.0593 [M - 4BF_4]^{4+}$. Microanalysis: calcd (%) for C₈₀H₈₀B₈F₃₂Fe₄N₄₀·9H₂O: C 35.83, H 3.68, N 21.89; found C 35.71, H 3.57, N 21.75.

$[Mn_4(L2)_4](OTf)_8$

To a suspension of ligand L2 (14.43 mg, 36,03 µmol) in CH₃CN (4 ml), [Mn(dmso)₆](OTf)₂ (29.61 mg, 36,03 µmol) was added. The mixture was stirred at 60°C for 24 h to give a light yellow solution. The complex was isolated in quantitative yield as yellow crystals by precipitation with Et₂O. HR-MS (ES): calcd for C₈₀H₈₀Cl₆N₄₀O₂₄Cu₄: m/z = 1226.0766, found $m/z = 1226.0815 [M - 2ClO_4]^{2+}$, calcd for C₈₀H₈₀Cl₅N₄₀O₂₀Cu₄: m/z = 784.4015, found $m/z = 784.4048 [M - 3ClO_4]^{3+}$, calcd for C₈₀H₈₀Cl₄N₄₀O₁₆Cu₄: m/z = 562.0652, found $m/z = 784.4048 [M - 3ClO_4]^{3+}$, calcd for C₈₀H₈₀Cl₄N₄₀O₁₆Cu₄: m/z = 562.0652, found $m/z = 784.4048 [M - 3ClO_4]^{3+}$, calcd for C₈₀H₈₀Cl₄N₄₀O₁₆Cu₄: m/z = 562.0652, found $m/z = 784.4048 [M - 3ClO_4]^{3+}$, calcd for C₈₀H₈₀Cl₄N₄₀O₁₆Cu₄: m/z = 562.0652, found $m/z = 784.4048 [M - 3ClO_4]^{3+}$, calcd for C₈₀H₈₀Cl₄N₄₀O₁₆Cu₄: m/z = 562.0652, found $m/z = 784.4048 [M - 3ClO_4]^{3+}$, calcd for C₈₀H₈₀Cl₄N₄₀O₁₆Cu₄: m/z = 562.0652, found $m/z = 784.4048 [M - 3ClO_4]^{3+}$, calcd for C₈₀H₈₀Cl₄N₄₀O₁₆Cu₄: m/z = 562.0652, found $m/z = 784.4048 [M - 3ClO_4]^{3+}$, calcd for C₈₀H₈₀Cl₄N₄₀O₁₆Cu₄: m/z = 562.0652, found $m/z = 784.4048 [M - 3ClO_4]^{3+}$, calcd for C₈₀H₈₀Cl₄N₄₀O₁₆Cu₄: m/z = 562.0652, found $m/z = 784.4048 [M - 3ClO_4]^{3+}$, calcd for C₈₀H₈₀Cl₄N₄₀O₁₆Cu₄: m/z = 562.0652, found $m/z = 784.4048 [M - 3ClO_4]^{3+}$, calcd for C₈₀H₈₀Cl₄N₄₀O₁₆Cu₄: m/z = 562.0652, found $m/z = 784.4048 [M - 3ClO_4]^{3+}$, calcd for C₈₀H₈₀Cl₄N₄₀O₁₆Cu₄: m/z = 562.0652, found $m/z = 784.4048 [M - 3ClO_4]^{3+}$

562.0639 $[M - 4ClO_4]^{4+}$. Microanalysis: calcd (%) for C₈₈H₈₀F₂₄Mn₄N₄₀O₂₄S₈·11H₂O: C 32.90, H 3.20, N 17.44; found C 32.88, H 3.36, N 17.49.

$[Cu_4(L2)_4](ClO_4)_8$

To a suspension of ligand L2 (37.6 mg, 94 µmol) in CH₃CN (4 ml), Cu(ClO₄)₂·6H₂O (34.8 mg, 94 µmol) was added. The mixture was stirred at room temperature for 24 h to give a dark brown solution. The complex was isolated as brown solid by evaporation of the solvent and crystallisation of the residue from MeCN by the addition of Et₂O. Yield: 57 mg, 80%. ¹H NMR (CD₃CN, 400 MHz): TM(ppm) = 3.24, 6.87, 7.00, 7.24, 10.05, 10.65, 27.38, 33.59. HR-MS (ES): calcd for C₈₀H₈₀Cl₆N₄₀O₂₄Cu₄: m/z = 1226.0766, found m/z = 1226.0815 [$M - 2ClO_4$]²⁺, calcd for C₈₀H₈₀Cl₅N₄₀O₂₀Cu₄: m/z = 784.4015, found m/z = 784.4048 [$M - 3ClO_4$]³⁺, calcd for C₈₀H₈₀Cl₄N₄₀O₁₆Cu₄: m/z = 562.0652, found m/z = 562.0639 [$M - 4ClO_4$]⁴⁺. Microanalysis: calcd (%) for C₈₀H₈₀Cl₈Cu₄N₄₀O₃₂·15H₂O: C 32.89, H 3.79, N 19.18; found C 32.79, H 3.57, N 19.35.

$[Zn_4(L3)_4](OTf)_8$

To a suspension of ligand L3 (16.0 mg, 37.3 µmol) in CH₃CN (3 ml), Zn(OTf)₂·H₂O (13.5 mg, 37.3 µmol) was added. The yellow solution formed was stirred at room temperature for 24 h. The complex was isolated as yellow solid by evaporation of the solvent and crystallisation of the residue from MeCN by the addition of Et₂O. Yield: 20 mg, 69%. ¹H NMR (CD₃CN, 400 MHz): TM(ppm) = 2.28 (s, 6H, H₃), 3.41 (s, 6H, H₆), 5.71 (d, J = 7.6 Hz, 1H, H₁₁), 6.32 (s, 1H, H₈), 6.53 (d, J = 7.2 Hz, 1H, H₁₁), 7.02 (t, J = 7.6 Hz, 1H, H₁₂), 7.15 (s, 2H, H₁), 7.46 (t, J = 7.6 Hz, 1H, H₁₂), 7.60 (s, 2H, H₅), 7.75 (t, J = 7.6 Hz, 1H, H₁₃), 10.87 (s, 2H, NH_{imid}). HR-MS (ES): calcd for C₉₃H₉₆F₁₅N₄₀O₁₈S₆Zn₄: m/z = 1434.1487, found m/z = 1434.0970 [M - 20Tf]²⁺, calcd for C₉₂H₉₆F₁₅N₄₀O₁₂S₅Zn₄: m/z = 642.9663, found m/z = 643.1031 [M - 40Tf]⁴⁺. Microanalysis: calcd (%) for C₉₆H₉₆F₂₄N₄₀O₂₄S₈Zn₄·14H₂O: C 33.71, H 3.65, N 16.38; found C 33.74, H 3.70, N 16.19.

$[Co_4(L3)_4](OTf)_8$

To a suspension of ligand L3 (29.47 mg, 68.77 μ mol) in CH₃CN (5 ml), [Co(dmso)₆](OTf)₂ (56.78 mg, 68.77 μ mol) was added. The mixture was stirred at room temperature for 24 h. The complex was isolated as dark orange solid by evaporation of the solvent and crystallisation of the residue from MeCN by the addition of Et₂O. Yield: 40 mg, 74%. ¹H

NMR (CD₃CN, 400 MHz): [™](ppm) = -94.12, -77.87, -50.55, -16.67, -15.97, -15.73, 45.40, 95.36, 124.85, 154.69, 222.23. HR-MS (ES): calcd for C₉₄H₉₆F₁₈N₄₀O₁₈S₆Co₄: m/z = 1421.1590, found $m/z = 1421.1379 [M - 20Tf]^{2+}$, calcd for C₉₃H₉₆F₁₅N₄₀O₁₅S₅Co₄: m/z = 898.1226, found $m/z = 898.1194 [M - 30Tf]^{3+}$, calcd for C₉₂H₉₆F₁₂N₄₀O₁₂S₄Co₄: m/z = 636.1032, found $m/z = 636.1070 [M - 40Tf]^{4+}$. Microanalysis: calcd (%) for C₉₆H₉₆Co₄F₂₄N₄₀O₂₄S₈·12H₂O: C 34.33, H 3.60, N 16.68; found C 34.81, H 3.89, N 16.32.

[Fe4(L3)4](OTf)8

To a suspension of ligand L3 (29.78 mg, 69.49 µmol) in CH₃CN (5 ml), [Fe(dmso)₆](OTf)₂ (57.18 mg, 69.49 µmol) was added. The mixture was stirred at 60 °C for 24 h. The complex was isolated as orange solid by evaporation of the solvent and crystallisation of the residue from MeCN by the addition of Et₂O. Yield: 41 mg, 77%. ¹H NMR (CD₃CN, 400 MHz): $^{\text{TM}}(\text{ppm}) = -75.87, -60.51, -36.62, -15.86, -9.30, 2.53, 36.71, 91.58, 98.89, 144.48, 171.65.$ Microanalysis: calcd (%) for C₉₆H₉₆F₂₄Fe₄N₄₀O₂₄S₈·18H₂O: C 33.38, H 3.85, N 16.22; found C 33.20, H 3.68, N 16.47.

$[Cu_4(L3)_4](OTf)_8$

To a suspension of ligand L3 (40 mg, 82.90 µmol) in CH₃CN (4 ml), $[Cu(dmso)_6](OTf)_2$ (68.85 mg, 82.49 µmol) was added. The mixture was stirred at r.t. for 24 h. The complex was isolated as orange solid by evaporation of the solvent and crystallisation of the residue from MeCN by the addition of Et₂O. Yield: 55 mg, 79%. ¹H NMR (CD₃CN, 400 MHz): TM(ppm) = -3.26, -2.05, 2.95, 4.30, 6.76, 6.96, 7.13, 7.52, 10.80, 15.81, 32.51, 34.67, 51.77. Microanalysis: calcd (%) for C₉₆H₉₆Cu₄F₂₄N₄₀O₂₄S₈·33H₂O: C 30.70, H 4.35, N 14.92; found C 30.69, H 3.74, N 14.86.

$[Mn_4(L3)_4](OTf)_8$

To a suspension of ligand L3 (51.71 mg, 107.17 µmol) in CH₃NO₂ (5 ml), $[Mn(dmso)_6](OTf)_2$ (88.08 mg, 107.17 µmol) was added. The mixture was stirred at 60°C under an atmosphere of N₂ for 24 h. The complex was isolated as yellow solid by evaporation of the solvent and crystallisation of the residue from MeCN by the addition of Et₂O. Yield: 85 mg, 95%. ¹H NMR (CD₃CN, 400 MHz): TM(ppm) = the spectra was broad and undefined. Microanalysis: calcd (%) for C₉₆H₉₆F₂₄Mn₄N₄₀O₂₄S₈·12H₂O: C 34.50, H 3.62, N 16.46; found C 34.14, H 3.62, N 16.60.

$[Zn_4(L4)_4](OTf)_8$

To a suspension of ligand L4 (21.0 mg, 49.0 µmol) in CH₃CN (4 ml), Zn(OTf)₂·H₂O (17.81 mg, 49.0 µmol) was added. The yellow solution was stirred at room temperature for 24 h. The complex was isolated as yellow solid by evaporation of the solvent and crystallisation of the residue from MeCN by the addition of Et₂O. Yield: 29 mg, 76%. ¹H NMR (CD₃CN, 400 MHz): TM(ppm) = 1.68 (s, 6H, H₃), 3.39 (s, 6H, H₆), 5.90 (d, J = 7.6 Hz, 1H, H₁₁), 6.41 (s, 1H, H₈), 6.46 (d, J = 7.2 Hz, 1H, H₁₁), 7.16 (t, J = 7.6 Hz, 1H, H₁₂), 7.36 (d, J = 2 Hz, 2H, H₁), 7.50 (t, J = 7.6 Hz, 1H, H₁₂), 7.65 (s, 2H, H₅), 7.80 (t, J = 7.6 Hz, 1H, H₁₃), 10.88 (s, 2H, NH_{imid}). Microanalysis: calcd (%) for C₉₆H₉₆F₂₄N₄₀O₂₄S₈Zn₄·11H₂O: C 34.25, H 3.53, N 16.64; found C 34.00, H 3.65, N 16.54.

$[Fe_4(L4)_4](OTf)_8$

To a suspension of ligand L4 (18.44 mg, 43.03 µmol) in a CH₃CN/MeOH mixture (2:1, 6 ml), $[Fe(dmso)_6](OTf)_2$ (57.18 mg, 69.49 µmol) was added. The mixture was stirred at 60 °C for 24 h. The complex was isolated as red solid by evaporation of the solvent and crystallisation of the residue from MeCN by the addition of Et₂O. Yield: 21 mg, 63%. ¹H NMR (CD₃CN, 400 MHz): TM(ppm) = -67.28, -61.79, -27.38, -5.56, 0.72, 2.22, 11.43, 35.81, 37.86, 86.76, 135.66, 177.32.

$[Zn_4(L5)_4](OTf)_8$

To a suspension of ligand **L5** (19.3 mg, 48.1 µmol) in CH₃CN (4 ml), Zn(OTf)₂·H₂O (17.5 mg, 48.1 µmol) was added. The yellow solution was stirred at room temperature for 24 h. The complex was isolated as yellow solid by evaporation of the solvent and crystallisation of the residue from MeCN by the addition of Et₂O. Yield: 30 mg, 81%. ¹H NMR (CD₃CN, 400 MHz): TM(ppm) = 3.51 (s, 6H, H₅), 5.46 (d, J = 7.6 Hz, 1H, H₁₀), 6.49 (d, J = 7.6 Hz, 1H, H₁₀), 6.53 (s, 2H, H₂), 6.58 (s, 1H, H₇), 7.10 (dd, J = 2.2 Hz and 1.4 Hz, 2H, H₁), 7.24 (t, J = 7.2 Hz, 1H, H₁₁), 7.52 (t, J = 7.2 Hz, 1H, H₁₁), 7.74 (s, 2H, H₄), 7.86 (t, J = 7.6 Hz, 1H, H₁₂), 11.56 (s, 2H, NH_{imid}). HR-MS (ES): calcd for C₈₆H₈₀F₁₈N₄₀O₁₈S₆Zn₄: m/z = 1378.0859, found $m/z = 1378.1125 [M - 207f]^{2+}$, calcd for C₈₅H₈₀F₁₂N₄₀O₁₂S₄Zn₄: m/z = 613.0675, found $m/z = 613.0831 [M - 407f]^{4+}$. Microanalysis: calcd (%) for C₈₈H₈₀F₂₄N₄₀O₂₄S₈Zn₄·10H₂O: C 32.66, H 3.11, N 17.31; found C 32.53, H 3.35, N 17.78.

[Co4(L5)4](OTf)8

To a suspension of ligand L5 (16.58 mg, 41.4 µmol) in CH₃CN (4 ml), $[Co(dmso)_6](OTf)_2$ (34.18 mg, 41.4 µmol) was added. The red solution was stirred at room temperature for 24 h. The complex was isolated in quantitative yield as orange solid by evaporation of the solvent and crystallisation of the residue from MeCN by the addition of Et₂O. ¹H NMR (CD₃CN, 400 MHz): TM(ppm) = -59.40, -46.04, -30.82, -24.88, -24.70, 28.11, 39.79, 83.95, 134.61, 157.68, 180.53. HR-MS (ES): calcd for C₈₆H₈₀F₁₈N₄₀O₁₈S₆Co₄: m/z = 1365.0964, found $m/z = 1365.0743 [M - 20Tf]^{2+}$, calcd for C₈₅H₈₀F₁₅N₄₀O₁₅S₅Co₄: m/z = 860.7475, found $m/z = 860.7434 [M - 30Tf]^{3+}$, calcd for C₈₄H₈₀F₁₂N₄₀O₁₂S₄Co₄: m/z = 608.0723, found $m/z = 608.066 [M - 40Tf]^{4+}$. Microanalysis: calcd (%) for C₈₈H₈₀Co₄F₂₄N₄₀O₂₄S₈·12H₂O: C 32.56, H 3.23, N 17.26; found C 32.54, H 3.03, N 17.50.

$[Fe_4(L5)_4](OTf)_8$

To a suspension of ligand **L5** (16.38 mg, 40.90 µmol) in CH₃CN (4 ml), [Fe(dmso)₆](OTf)₂ (33.65 mg, 40.90 µmol) was added. The mixture was stirred at 60 °C for 24 h. The complex was isolated in quantitative yield as red solid by evaporation of the solvent and crystallisation of the residue from MeCN by the addition of Et₂O. ¹H NMR (CD₃CN, 400 MHz): TM(ppm) = - 80.73, -60.79, -33.81, -10.16, 3.32, 42.58, 46.03, 58.44, 108.76, 147.31, 166.03. HR-MS (ES): calcd for C₈₆H₈₀F₁₈N₄₀O₁₈S₆Fe₄: m/z = 1359.6013, found m/z = 1359.6882 [M - 2OTf]²⁺, calcd for C₈₅H₈₀F₁₅N₄₀O₁₅S₅Fe₄: m/z = 856.7500, found m/z = 856.7995 [M - 3OTf]³⁺, calcd for C₈₄H₈₀F₁₂N₄₀O₁₂S₄Fe₄: m/z = 605.0740, found m/z = 605.0887 [M - 4OTf]⁴⁺. Microanalysis: calcd (%) for C₈₈H₈₀F₂₄Fe₄N₄₀O₂₄S₈·11H₂O: C 32.87, H 3.20, N 17.42; found C 32.58, H 3.21, N 17.78.

$[Mn_4(L5)_4](OTf)_8$

To a suspension of ligand L5 (9.86 mg, 24,62 µmol) in CH₃CN (4 ml), [Mn(dmso)₆](OTf)₂ (20.23 mg, 24,62 µmol) was added. The mixture was stirred at 60 °C for 24 h, giving a light yellow solution. The complex was isolated in quantitative yield as yellow crystals by precipitation with Et₂O. ¹H NMR (CD₃CN, 400 MHz): TM(ppm) = the spectra was broad and undefined. Microanalysis: calcd (%) for C₈₈H₈₀F₂₄Mn₄N₄₀O₂₄S₈·12H₂O: C 32.72, H 3.25, N 17.34; found C 32.54, H 3.33, N 17.68.

$[Zn_4(L6)_4](OTf)_8$

To a suspension of ligand **L6** (8.87 mg, 20.41 µmol) in CH₃CN (3 ml), Zn(OTf)₂·H₂O (7.42 mg, 20.41 µmol) was added. The yellow solution was stirred at room temperature for 24 h. The slightly turbid solution was filtered and the complex was isolated as a yellow solid by evaporation of the filtrate and crystallisation of the residue from MeCN by the addition of Et₂O. Yield: 14mg, 85%. ¹H NMR (CD₃CN, 400 MHz): TM(ppm) = 3.63 (s, 6H, H₅), 5.71 (d, J = 7.6 Hz, 1H, H₁₀), 6.48 (d, J = 7.2 Hz, 1H, H₁₀), 6.86 (s, 1H, H₇), 7.28 (t, J = 7.6 Hz, 1H, H₁₁), 7.37 (d, J = 3.2 Hz, 2H, H₁ or H₂), 7.61 (d, J = 3.2 Hz, 2H, H₁ or H₂), 7.75 (t, J = 7.2 Hz, 1H, H₁₂), 8.07 (s, 2H, H₄). HR-MS (ES): calcd for C₈₆H₇₂F₁₈N₃₂O₁₈S₁₄Zn₄: m/z = 1446.9295, found m/z = 1446.9081 [M - 2OTf]²⁺, calcd for C₈₅H₈₀F₁₅N₃₂O₁₅S₁₃Zn₄: m/z = 914.9688, found m/z = 914.9824, [M - 3OTf]³⁺. Microanalysis: calcd (%) for C₈₈H₇₂F₂₄N₃₂O₂₄S₁₆Zn₄·15H₂O: C 30.53, H 2.97, N 12.94; found C 30.65, H 3.12, N 13.21.

$[Co_4(L6)_4](OTf)_8$

To a suspension of ligand **L6** (56.19 mg, 129.3 µmol) in CH₃NO₂ (4 ml), [Co(dmso)₆](OTf)₂ (106.76 mg, 129.3 µmol) was added. The red solution was stirred at room temperature for 24 h. Again, a small amount of insoluble, amorphous material was flitered out and the complex was isolated as a brown solid by evaporation of the filtrate and crystallisation of the residue from MeCN by the addition of Et₂O. Yield: 88 mg, 86%. ¹H NMR (CD₃CN, 400 MHz): TM(ppm) = -74.19, -44.56, -38.29, -18.08, -16.19, 35.07, 75.86, 145.95, 149.15, 195.15.HR-MS (ES): calcd for C₈₆H₇₂Co₄F₁₈N₃₂O₁₈S₁₄: m/z = 1433.9414, found m/z = 1433.9474 [M - 20Tf]²⁺, calcd for C₈₅H₇₂Co₄F₁₅N₃₂O₁₅S₁₃: m/z = 906.3101, found m/z = 906.3137, [M - 30Tf]³⁺. Microanalysis: calcd (%) for C₈₈H₇₂F₂₄N₃₂O₂₄S₁₆Co₄·8H₂O: C 31.93, H 2.68, N 13.54; found C 31.80, H 2.89, N 13.88.

[Fe₄(L6)₄](OTf)₈

To a suspension of ligand L6 (10 mg, 23.01 µmol) in CH₃NO₂ (4 ml), [Fe(dmso)₆](OTf)₂ (18.93 mg, 23.01 µmol) was added. The red solution was stirred under N₂ at 100 °C for 24 h. The complex was isolated as orange solid by evaporation of the solvent and crystallisation of the residue from MeCN by the addition of Et₂O. Yield: 22 mg, 75%. ¹H NMR (CD₃CN, 400 MHz): TM(ppm) = -86.76, -38.19, -36.33, -14.58, 9.43, 34.05, 55.70, 117.79, 151.18, 152.92. HR-MS (ES): calcd for $C_{86}H_{72}F_{18}Fe_4N_{32}O_{18}S_{14}$: m/z = 1427.9452, found m/z =

1427.9291 $[M - 2OTf]^{2+}$, calcd for $C_{85}H_{72}F_{15}Fe_4N_{32}O_{15}S_{13}$: m/z = 902.3126, found m/z = 902.3003, $[M - 3OTf]^{3+}$, calcd for $C_{84}H_{72}F_{12}Fe_4N_{32}O_{12}S_{12}$: m/z = 638.9873, found m/z = 638.9975, $[M - 4OTf]^{4+}$. Microanalysis: calcd (%) for $C_{88}H_{72}F_{24}N_{32}O_{24}S_{16}Fe_4 \cdot 29H_2O$: C 28.75, H 3.56, N 12.19; found C 28.50, H 3.23, N 11.90.

[Cu₄(L6)₄](OTf)₈

To a suspension of ligand L6 (43.62mg, 100.38µmol) in CH₃NO₂ (4 ml), [Cu(dmso)₆](OTf)₂ (83.36 mg, 100.38 µmol) was added. The dark brown solution was stirred at room temperature for 24 h. The complex was isolated as brown solid by evaporation of the solvent and crystallisation of the residue from MeCN by the addition of Et₂O. Yield: 22 mg, 75%. ¹H NMR (CD₃CN, 400 MHz): TM(ppm) = 2.59, 4.30, 7.13, 7.54, 10.63, 11.27, 37.77, 42.86. HR-MS (ES): calcd for C₈₆H₇₂Cu₄F₁₈N₃₂O₁₈S₁₄: *m/z* = 1442.9301, found *m/z* = 1442.9739 [*M* - 20Tf]²⁺, calcd for C₈₄H₇₂Cu₄F₁₂N₃₂O₁₂S₁₂: *m/z* = 646.2353, found *m/z* = 646.0146, [*M* - 40Tf]⁴⁺. Microanalysis: calcd (%) for C₈₈H₇₂Cu₄F₂₄N₃₂O₂₄S₁₆·12H₂O: C 31.08, H 2.85, N 13.18; found C 30.88, H 2.59, N 13.13.

Ligand	Metal salt	Solvent	Reaction conditions	Product	Yield
L2	Zn(OTf)₂ · xH₂O	MeCN	r.t., 24 h	diamagnetic	82%
L2	$Co(BF_4)_2 \cdot 6H_2O$	MeCN	r.t., 24 h	paramagnetic	78%
L2	$Fe(BF_4)_2 \cdot 6H_2O$	MeCN	60°C, 24 h	paramagnetic	74%
L2	Cu(ClO ₄) ₂ · 6H ₂ O	MeCN	r.t., 24 h	paramagnetic	80%
L2	[Mn(dmso) ₆](OTf) ₂	MeCN	60°C, 24 h	paramagnetic	quantitative
L3	Zn(OTf)₂ · xH₂O	MeCN	r.t., 24 h	diamagnetic	69%
L3	[Co(dmso) ₆](OTf) ₂	MeCN	r.t., 24 h	paramagnetic	74%
L3	[Fe(dmso) ₆](OTf) ₂	MeCN	60°C, 24 h	paramagnetic	77%
L3	[Cu(dmso) ₆](OTf) ₂	MeCN	r.t., 24 h	paramagnetic	79%
L3	[Mn(dmso) ₆](OTf) ₂	MeNO ₂	60°C, 24 h	paramagnetic	95%
L4	Zn(OTf)₂ · xH₂O	MeCN	r.t., 24 h	diamagnetic	76%
L4	[Fe(dmso) ₆](OTf) ₂	MeCN/MeOH	H 60°C, 24 h	paramagnetic	63%
L5	$Zn(OTf)_2 \cdot xH_2O$	MeCN	r.t., 24 h	diamagnetic	81%
L5	[Co(dmso) ₆](OTf) ₂	MeCN	r.t., 24 h	paramagnetic	quantitative
L5	[Fe(dmso) ₆](OTf) ₂	MeCN	60°C, 24 h	paramagnetic	quantitative
L5	$Cu(OTf)_2 \cdot xH_2O$	MeCN	r.t., 24 h	paramagnetic	no grid
L5	[Mn(dmso) ₆](OTf) ₂	MeCN	60°C, 24 h	paramagnetic	quantitative
L1	[Zn(dmso) ₆](OTf) ₂	MeNO ₂	reflux, 24 h	diamagnetic	quantitative
L1	[Fe(dmso) ₆](OTf) ₂	MeNO ₂	reflux, 24 h	paramagnetic	quantitative
L6	Zn(OTf)₂ · xH₂O	MeCN	r.t., 24 h	diamagnetic	85%
L6	[Co(dmso) ₆](OTf) ₂	MeNO ₂	r.t., 24 h	paramagnetic	86%
L6	[Fe(dmso) ₆](OTf) ₂	MeNO ₂	reflux, 24 h	paramagnetic	75%
L6	[Cu(dmso) ₆](OTf) ₂	MeNO ₂	reflux, 24 h	paramagnetic	75%

Table 1: General reaction conditions, yields and final product characteristics for grid complexes.

High resolution ESI mass spectrum of tetranuclear $[Cu_4(L6)_4](OTf)_4^{4+}$ and mononuclear $[Cu_1(L6)_2](OTf)_1^{1+}$

A set of 1-H NMR spectra of Fe(II) complexes with structurally different bis-hydrazone-type ligands.

