Supplementary Information of

Introduction of Ferrocene-containing [2]Rotaxanes onto Siloxane, Silsesquioxane and Polysiloxanes via Click Chemistry

Gilbert Yu, Yuji Suzaki, Tomoko Abe and Kohtaro Osakada*

Chemical Resources Laboratory R1-3, Tokyo Institute of Technology

4259 Nagatsuta, Midoriku, Yokohama 226-8503, Japan

Fax/Tel: +81-45-924-5224

e-mail: kosakada@res.titech.ac.jp

Experimental Section

N₃CH₂CH₂CH₂Si(OSiMe₃)₃ (2a)

2a was prepared by a similar procedure reported in the literature.¹ The reaction of NaN₃ (870 mg, 13 mmol) and ClCH₂CH₂CH₂Si(OSiMe₃)₃ (2.0 g, 5.4 mmol) in DMF yield **2a** (1.62 g, 4.3 mmol, 80%).

¹H NMR (400 MHz, CDCl₃, r.t.) δ 0.10 (s, 27H, Me), 0.50 (m, 2H, CH₂Si), 1.63 (2H, CH₂CH₂N₃), 3.23 (t, 2H, CH₂N₃, J = 7.0 Hz) ppm; ¹³C{¹H} NMR (100 MHz, CDCl₃, r.t.) δ 1.8 (Me), 11.7 (SiCH₂), 23.3 (SiCH₂CH₂), 54.1 (N₃CH₂) ppm; IR (KBr disk, r.t.): ν 2097 (N₃) cm⁻¹; ESI-MS (eluent: acetone); calcd for C₁₂H₃₄N₃O₃Si₄+H 380.2; found, m/z 380.3 [M+H]⁺;

ClCH₂CH₂CH₂(C₂HN₃)(CH₂)₃(C₂₈H₆₃O₁₂Si₈)

A CHCl₃ solution (30 mL) containing **2b** (1.20 g, 1.33 mmol), ClCH₂CH₂CH₂CH₂CCH (164 mg, 1.41 mmol) and Cu[Fe(CN)₄]PF₆ (991 mg, 2.66 mmol) was stirred for 48 h at 50 °C. The resulting solution was fractionated between H₂O and CH₂Cl₂ and the separated organic phased was dried over MgSO₄, filtered and evaporated to yield crude product which was purified by SiO₂ column chromatography (successive eluent; Hexane, Et₂O, and CH₂Cl₂) to ClCH₂CH₂CH₂(C₂HN₃)(CH₂)₃(C₂₈H₆₃O₁₂Si₈) as a white solid (722 mg, 0.71 mmol, 53%).

¹H NMR (400 MHz, CDCl₃, r.t.) δ 0.60-0.63 (2H, SiCH₂), 0.598 (d, 6H, SiCH₂, *J* = 7 Hz), 0.601 (d, 6H, SiCH₂, *J* = 7 Hz), 0.946 (d, 18H, Me, *J* = 8 Hz), 0.951 (d, 24H, Me, *J* = 8 Hz), 1.78-1.92 (m, 13H), 1.98 (m, 2H), 2.76 (t, 2H, C_{triazole}CH₂, *J* = 7 Hz), 3.57 (t, 2H, ClCH₂, *J* = 7 Hz), 4.30 (t, 2H, NCH₂, *J* = 7 Hz), 7.25 (s, 1H, C₂HN₃) ppm; ¹³C{¹H} NMR (100 MHz, CDCl₃, r.t.) δ 9.4 (SiCH₂), 22.59, 22.63, 23.99, 24.00, 24.3, 25.1, 25.82, 25.83, 26.8, 32.2 (C_{triazole}CH₂), 44.9 (ClCH₂), 52.5 (NCH₂), 120.5 (C₂HN₃), 147.7 (C₂HN₃) ppm; Anal. Calcd for C₃₇H₇₈N₃O₁₂Si₈Cl: C, 43.69; H, 7.73; N, 4.13%. Found: C, 43.49; H, 7.62; N, 4.05%; HR-ESI-MS (eluent: acetone); calcd for C₃₇H₇₈N₃O₁₂Si₈Cl+Na 1038.3326; found, *m/z* 1038.3320 [M+Na]⁺.

$N_3CH_2CH_2CH_2(C_2HN_3)(CH_2)_3(C_{28}H_{63}O_{12}Si_8)$ (2c)

2c was prepared by a similar procedure reported in the literature.¹ The reaction of NaN₃ (319 mg, 4.9 mmol), KI (814 mg, 4.9 mmol) and ClCH₂CH₂CH₂(C₂HN₃)(CH₂)₃(C₂₈H₆₃O₁₂Si₈) (960 mg, 0.94 mmol) in DMF (20 mL) at 80 °C overnight. The resulting solution was fractionated between brine and CH₂Cl₂/Hexane and the separated organic phased was dried over MgSO₄, filtered and evaporated to yield **2c** as a yellow solid (713 mg, 0.70 mmol, 74%).

¹H NMR (400 MHz, CDCl₃, r.t.) δ 0.61-0.63 (2H, SiCH₂), 0.601 (d, 6H, SiCH₂, *J* = 7 Hz), 0.604 (d, 6H, SiCH₂, *J* = 7 Hz), 0.949 (d, 18H, Me, *J* = 7 Hz), 0.954 (d, 24H, Me, *J* = 7 Hz), 1.64-1.72 (m, 2H), 1.75-1.90 (m, 11H), 1.98 (m, 2H), 2.76 (t, 2H, *J* = 7 Hz), 3.31 (t, 2H, N₃CH₂, *J* = 7 Hz), 4.30 (t, 2H, NCH₂, *J* = 8 Hz), 7.24 (s, 1H, C₂HN₃) ppm; ¹³C{¹H} NMR (100 MHz, CDCl₃, r.t.) δ 9.4 (SiCH₂), 22.6, 22.7, 24.0, 24.1, 25.4, 25.8 (2 signals), 26.8, 28.6 (C_{triazole}CH₂), 51.4 (NCH₂), 52.5 (NCH₂), 120.4 (C₂HN₃), 147.7 (C₂HN₃) ppm; Anal. Calcd for C₃₇H₇₈N₆O₁₂Si₈: C, 43.41; H, 7.68; N, 8.21%. Found: C, 43.50; H, 7.98; N, 7.94%; HR-ESI-MS (eluent: acetone); calcd for C₃₇H₇₈N₆O₁₂Si₈+Na 1045.3730; found, *m*/*z* 1045.3754 [M+Na]⁺.

Synthesis of model compound, [FcCH₂NH₂CH₂C₆H₄-4-nBu]PF₆

Scheme S1. Synthesis of model compound 4

$H_2NCH_2C_6H_4\text{-}4\text{-}nBu$

NCC₆H₄-4-nBu (3.19 g, 20 mmol) was added dropwise to a suspension of LiAlH₄ (1.55 g, 41 mmol) in THF (150 mL) at room temperature and was refluxed for 15 h. The resulting mixture was cooled to 0 °C, quenched with 1M KOH(aq) (ca. 40 mL), and fractionated by addition of hexane. The separated organic phase was dried over MgSO₄ and evaporation of the solution gave the crude product which was purified SiO₂ column chromatography (eluent: CHCl₃/methanol = 10/1) to give H₂NCH₂C₆H₄-4-nBu as colorless oil (2.22 g, 14 mmol, 70%). The compound was analyzed by ¹H NMR spectroscopy.²

$FcCH=NCH_2C_6H_4-4-nBu$ ($Fc = Fe(C_5H_4)(C_5H_5)$)

A solution of ferrocenecarboxaldehyde (2.37 g, 11 mmol) and $H_2NCH_2C_6H_4$ -4-nBu (2.16 g, 13 mmol) in EtOH (200 mL) was stirred for 12 h at 65 °C in the presence of MS4A (molecular sieves 4A, 2.0 g). The reaction mixture was filtered and then evaporated to yield the crude product which was purified by washing

with cold hexane to yield $FcCH=NCH_2C_6H_4$ -4-nBu as a reddish-brown solid (2.35 g, 6.6 mmol, 49%).

¹H NMR (300 MHz, CDCl₃, r.t.) δ 0.91 (t, 3H, Me, J = 7 Hz), 1.34 (m, 2H, CH₂, J = 7 Hz), 1.58 (m, 2H, CH₂, J = 7 Hz), 2.59 (m, 2H, CH₂), 4.17 (s, 5H, C₅H₅), 4.37 (m, 2H, C₅H₄), 4.63 (s, 2H, NCH₂), 4.68 (m, 2H, C₅H₄), 7.15 (d, C₆H₄, J = 8 Hz), 7.21 (d, C₆H₄, J = 8 Hz), 8.23 (s, 1H, NCH) ppm; ¹³C{¹H} NMR (75.5 MHz, CDCl₃, r.t.) δ 13.8 (Me), 22.1 (CH₂), 33.5 (CH₂), 35.1 (CH₂), 64.7 (NCH₂), 68.4 (C₅H₄), 68.9 (C₅H₅), 70.2 (C₅H₄), 80.4 (C₅H₄), 127.6 (C₆H₄), 128.3 (C₆H₄), 136.6 (C₆H₄), 141.2 (C₆H₄), 161.7 (N=C) ppm; IR (KBr disk, r.t.): ν 1636 (C=N) cm⁻¹; Anal. Calcd for C₂₂H₂₅FeN+(H₂O)_{0.25}: C, 72.63; H, 7.07; N, 3.85%. Found: C, 72.41; H, 7.16; N, 3.73%.

$[FcCH_2NH_2CH_2C_6H_4-4-nBu]PF_6 (4)$

FcCH=NCH₂C₆H₄-4-nBu (1.79 g, 5.0 mmol) was dissolved in MeOH (50 mL) at room temperature. NaBH₄ (2.25 g, 59 mmol) was added to the solution and stirred for 4 h at room temperature and then mixed with 4 M HCl to cause the separation of a solid from the solution. The resulting solid was filtered and washed with hexane and Et₂O to yield [FcCH₂NH₂CH₂C₆H₄-4-nBu]Cl (1.81 g, 4.5 mmol) which was used without further purification. Acetone (50)mL) suspension of [FcCH₂NH₂CH₂C₆H₄-4-nBu]Cl (1.81 g) was poured into an acetone solution (50 mL) of NH_4PF_6 (3.32 g, 20 mmol) and stirred for 1 h at room temperature. The resulting mixture was filtered and the solids were washed with water and CH₂Cl₂ to give $[FcCH_2NH_2CH_2C_6H_4-4-nBu]PF_6$ (4) as yellow solid (1.79 g, 3.5 mmol).

¹H NMR (300 MHz, CD₃CN, r.t.) δ 0.91 (t, 3H, Me, J = 7 Hz), 1.33 (m, 2H, CH₂, J = 7 Hz), 1.51 (m, 2H, CH₂, J = 7 Hz), 2.62 (m, 2H, CH₂), 4.04 (s, 2H, NCH₂), 4.06 (s, 2H, NCH₂), 4.21 (s, 5H, C₅H₅), 4.27 (m, 2H, C₅H₄), 4.37 (m, 2H, C₅H₄), 7.26 (d, C₆H₄, J = 8 Hz), 7.31 (d, C₆H₄, J = 8 Hz); ¹³C{¹H} NMR (75.5 MHz, CD₃CN, r.t.) δ

S5

13.9 (Me), 22.7 (CH₂), 33.9 (CH₂), 35.5 (CH₂), 48.2 (NCH₂), 51.4 (NCH₂), 68.9 (C₅H₅), 70.2 (C₅H₄), 71.2 (C₅H₄), 76.3 (C₅H₄), 128.6 (C₆H₄), 129.7 (C₆H₄), 130.6 (C₆H₄), 145.2 (C₆H₄) ppm; Anal. Calcd for C₂₂H₂₈F₆FeNP: C, 52.09; H, 5.56; N, 2.76%. Found: C, 52.05; H, 5.50; N, 2.79%; IR (KBr disk, r.t.) ν 3258 (N–H), 3235 (N–H), 824 (P–F), 559 (P–F) cm⁻¹.

Figure S1, IR spectra of (A) 1, (B) 3a, (C) 3b and (D) 3d (KBr disk, r.t.).

Figure S2, GPC Charts of (A) 2d and (B) 3d (eluent; THF).

Figure S4, Thermogravimetric (TG) analysis charts of (A) **3a**, (B) **3b** and (C) **3d** (scan rate: 5 °C/min).

Compound	5% weight loss temperature, T_{d5}
1	197 °C
2c	159 °C
3a	193 °C
3b	213 °C
3d	192 °C
chloropropyl-heptaisobutyl	230 °C
substituted silasesquioxane	

Table S1, 5% weight loss temperature, T_{d5} , of the compounds determined by TG analysis (5 °C/min).

Formula	$C_{50}H_{68}F_6FeNO_{10}P$
Fw	1043.90
size of crystal/ mm	0.50 x 0.30 x 0.35
crystal system	monoclinic
space group	<i>P</i> 2 ₁ / <i>c</i> (no 14)
<i>a</i> / Å	10.108(4)
b / Å	24.054(9)
c / Å	21.012(8)
eta / °	92.146(7)
$V/\text{\AA}^3$	5105(4)
Ζ	4
$D_{\rm c}$ / g cm ⁻³	1.358
No. of reflections measured	36929
No. of unique reflections	11405
No. of observations $(I > 3.0\sigma(I))$	8012
No. of variables	707
GOF	0.966
$R, R_{\rm w}$	0.0695, 0.1154

Table S2, Crystallographic data of [(DB24C8)4].

References

- 1) X. Yang, L. Dai and P. W. Carr, J. Chromatogr. A, 2003, 996, 13.
- 2) Pat. US2005/203086 A1, 2005.